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Abstract— We present a structured learning approach to
semantic annotation of RGB-D images. Our method learns to
reason about spatial relations of objects and fuses low-level
class predictions to a consistent interpretation of a scene. Our
model incorporates color, depth and 3D scene features, on which
an energy function is learned to directly optimize object class
prediction using the loss-based maximum-margin principle of
structural support vector machines. We evaluate our approach
on the NYU V2 dataset of indoor scenes, a challenging dataset
covering a wide variety of scene layouts and object classes. We
hard-code much less information about the scene layout into
our model then previous approaches, and instead learn object
relations directly from the data. We find that our conditional
random field approach improves upon previous work, setting
a new state-of-the-art for the dataset.

I. INTRODUCTION

For robots to perform varied tasks in unstructured envi-

ronments, understanding their surroundings is essential. We

formulate the problem of semantic annotation of maps as

a dense labeling of RGB-D images into semantic classes.

Dense labeling of measured surfaces allows for a detailed

reasoning about the scene.

In this work, we propose the use of random forests

combined with conditional random fields (CRF) to perform

robust estimation of structure classes in RGB-D images. The

CRF is learned using a structural support vector machine,

allowing it to integrate the noisy categorization produced by

a pixel-based random forest to a consistent interpretation of

the scene.

We thereby extend the success of learned CRF models for

semantic segmentation in RGB images to the domain of 3D

scenes. Our emphasis lies on exploiting the additional depth

and 3D information in all processing steps, while relying on

learning to create a model that is adjusted to the properties

of the sensor input and environment.

Our approach starts with a random forest, providing a

noisy local estimate of semantic classes based on color

and depth information. These estimates are grouped together

using a superpixel approach, for which we extend previous

superpixel algorithms from the RGB to the RGB-D domain.

We then build a geometric model of the scene, based on

the neighborhood graph of superpixels. We use this graph

not only to capture spatial relations in the 2D plane of the

image, but also to model object distances and surface angles

in 3D, using a point cloud generated from the RGB-D image.

The process is illustrated in Figure 1.
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Fig. 1. Overview of the proposed semantic segmentation method.

We assess the accuracy of our model on the challeng-

ing NYU Segmentation V2 dataset [1], where our model

outperforms previous approaches. Our analysis shows that

while our random forest model already has competitive

performance, the superpixel-based grouping and in particular

the loss-based learning are integral ingredients of the success

of our method.

II. RELATED WORK

The task of dense semantic annotation of 3D maps has

seen an increased interest in recent years. Early work in-

cludes the approach of Nüchter and Hertzberg [2], who com-

bine 6D SLAM, surface annotation, and object recognition

to build semantically annotated maps. The approach was

demonstrated on a mobile robot in an indoor environment.

More recently, Sengupta et al. [3] introduced a dataset

of semantically annotated street-scenes in a closed track,

captured as pairs of stereo images. They approach the task

by jointly reasoning about 3D layout and semantics of

the scenes and produce a dense labeling on image level.

Sengupta et al. [4] extended their approach to produce

a volumetric reconstruction of the scene, together with a

dense semantic labeling of the volumetric representation.

This image segmentation method builds on the hierarchical

CRF approach of Ladicky et al. [5], which is similar in spirit

to our approach, but uses Potts potentials together with cross-

validation to set potentials.

Recent work on indoor semantic annotation of maps

mostly focused on RGB-D images, which are now easy to

obtain using structured light sensors. Stückler et al. [6], for

example, used a Random Forest to obtain a dense semantic

labeling of images and integrated predictions over multiple
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views in 3D. They evaluated their approach on table-top and

simple indoors scenes. Silberman and Fergus [7] introduced

the NYU Depth Dataset V1 dataset, which consisted of a

large variety of densely annotated indoor scenes, captured

as RGB-D images. Their work also introduced a baseline

method for semantic segmentation of RGB-D image, which

is based on a CRF over superpixels, with unary potentials

given by interest point descriptors. While pairwise potentials

for the CRF were carefully designed for the dataset, po-

tentials were either directly set by hand or estimated using

empirical frequencies. This is in contrast to our work, which

applies structured prediction techniques to learn potentials

that optimize predictive performance. Ren et al. [8] evaluated

the design of features for semantic labeling of RGB-D data,

and used a hierarchical segmentation to provide context.

While they also defined a CRF on superpixels, their model

is again not learned, but a weighted Potts model, using only

a probability of boundary map, and not taking spatial layout

into account at all. Silberman et al. [1] extended the NYU

Depth Dataset V1 to the NYU Depth Dataset V2 that we

are using in this work. Their focus is on inferring support

relations in indoor scenes, such as objects resting on tables or

shelfs, which in turn rest on the floor. Their approach is based

on robust estimation of 3D plane hypotheses, which are then

jointly optimized with support relations and structure classes.

Silberman et al. [1] use a complex pipeline, employing

significant domain knowledge. In this work, on the other

hand, we try to learn all relevant domain specific features

directly from the data, which allows us to out-perform the

work of Silberman et al. [1] with respect to structure class

segmentation.

Couprie et al. [9] approach the task of semantic segmen-

tation of structure classes in RGB-D using the paradigm of

convolutional neural networks, extending previous work of

Farabet et al. [10] and Schulz and Behnke [11]. Similar to our

approach, Couprie et al. [9] combine the output of a pixel-

based, low-level learning algorithm with an independent

unsupervised segmentation step. In contrast to their work, we

improve our results by not only averaging predictions within

superpixels, but also explicitly learning interactions between

neighboring superpixels, favoring a consistent interpretation

of the whole image.

Stückler et al. [12] extend the approach of Stückler et al.

[6] to a real-time system for online learning and prediction

of semantic classes. They use a GPU implementation of

random forests, and integrate 3D scene information in an

online fashion. They evaluate their approach on the dataset

of Silberman et al. [1] with good results. We use the

implementation of random forest provided by Stückler et

al. [12], but instead of integrating predictions over time, we

focus on exploiting the structure within a single frame.

While many of the works mentioned in this chapter make

use of a CRF approach, we are not aware of any prior work

on semantic annotation of 3D maps that fully learns their

potentials.

Fig. 2. Visualization of the height computed using the method described
in Section III-B. Input images are shown on the left (depth not shown), the
computed height is depicted on the right. The top row exemplifies a typical
scene, while the bottom row shows a scene without horizontal surfaces,
where our method fails.

III. LEARNING DEPTH-SENSITVE CONDITIONAL

RANDOM FIELDS

We take a CRF approach, whose nodes represent a la-

beling of superpixels. We use an energy consisting of first

and second order factors (also called unary and pairwise

potentials), with learned potential functions. Let us denote

the representation of an input image by x and a labeling

of superpixels into semantic classes by y. Then the general

form of the energy is

g(x, y) =
∑

v∈V

ψv(x, yv) +
∑

(v,w)∈E

ψv,w(x, yv, yw). (1)

Here V enumerates the superpixels, and E ⊂ V ×V is a set

of edges, encoding adjacence between superpixels.

We learn the unary and pairwise energy functions ψv and

ψv,w from the training data using a structural support vector

machine (SSVM) [13]. The concept of SSVMs allows for

a principled, maximum-margin based, loss-sensitive training

of CRFs. Learning the potential yields much more complex

interactions than the simple Potts potentials that are often

used in the literature.

In general, structural SSVMs learn the parameters θ of a

predictor of the form

f(x) = argmax
y∈Y

θTΦ(x, y). (2)

We choose ψ in Equation (1) to be linear in the learnable

parameters and the data-depended features, resulting in a

form equivalent to Equation (2). Our features are described in

detail below. We use the 1-slack formulation of the structural

SVM [13] and solve the maximization in Equation (2) using a

combination of fusion moves [14] and the AD3 algorithm of

Martins et al. [15]. In contrast to graph-cut inference, fusion

moves and AD3 can work with arbitrary potential functions,

and allow precise learning using the SSVM approach.



A. Low Level Segmentation

We take a super-pixel based approach to semantic seg-

mentation. Our superpixel generation is based on the SLIC

algorithm [16]. We extend the standard SLIC algorithm,

which works on the Lab space, to also include depth in-

formation. The resulting algorithm is a localized k-Means in

Lab-D-XY space. Our implementation is publicly available

through the scikit-image library1. Similar to Silberman et

al. [1], we found little visual improvement over the RGB

segmentation when using additional depth information. On

the other hand, estimation of per-superpixel features based

on the 3D point cloud was more robust when including depth

information into the superpixel procedure. The resulting

superpixels are compact in the 2D image. As the density

of the corresponding point cloud is dependent on depth, we

did not succeed in creating superpixels that are compact in

3D while maintaining a meaningful minimum size.

B. Unary Image Features

Our method builds on the probability output of a random

forest, trained for pixel-wise classification of the struc-

ture classes. We use the GPU implementation provided by

Stückler et al. [12]2. The input for training are the full RGB-

D images, transformed to Lab color space. Each tree in the

forest uses training pixels only from a subset of training

images. For each training image, an equal number of pixels

for each occurring class is sampled. Split features are given

by difference of regions on color or depth channels. Region

size and offsets are normalized using the depth at the target

pixel. We accumulate the probabilistic output for all pixels

within a superpixel, and use the resulting distribution as a

feature for the unary node potentials in our CRF model.

We augment these prediction with another feature, based on

the height of a superpixel in 3D. This is a very informative

feature, in particular to determine the floor. To compute the

height of a (super) pixel, we first find the “up” direction.

We use a very simple approach that we found effective: we

cluster normal directions of all pixels into 10 clusters using

k-means, and use the one that is most parallel to the Y

direction, which roughly corresponds to height in the dataset.

We then project the 3D point cloud given by the depth along

this direction, and normalize the result between 0 and 1.

This procedure works robustly given there is some horizontal

surface in the image, such as the ground or a table. A few

scenes contain only walls and furniture, and the approach

fails for these. Figure 2 illustrates a typical case and one

of the much rarer failure cases. While we could use a more

elaborate scheme, such as the one from Silberman et al. [1],

we suspect that the feature is of little use in scenes without

horizontal surfaces.

C. Pairwise Depth-Sensitive Features

There are five different features used to build pairwise

potentials in our model:

1http://scikit-image.org
2https://github.com/deeplearningais/curfil

Fig. 3. Visualization of one of the pairwise features, the similarity between
superpixel normals. The image shows the zoom-in of a bedroom scene,
together with the superpixel over-segmentation. Lines connect adjacent su-
perpixels, and line-strength gives the magnitude of the orientation similarity.

• Constant. A constant feature allows to model general

neighborhood relations.

• Color Contrast. We employ a non-linear color contrast,

as is common in the computer vision literature, between the

superpixel mean colors ci and cj : exp
(

−γ‖ci − cj‖
2
)

.

• Vertical Alignment. We model the directed angle between

superpixel centers in the 2D image plane. This allows the

model to learn that “structure” is above “floor”, but not the

other way around.

• Depth Difference. We include the signed depth difference

between superpixels, which allows the model to detect depth

discontinuities that are not represented in the 2D neighbor-

hood graph of the superpixels.

• Normal Orientations. Differences in normal vector orien-

tation are a strong clue on whether two superpixels belong

to the same surface, and therefore the same structural class.

We compute the 3D orientation of normals using the method

of Holz et al. [17], as implemented in the point cloud

library (pcl)3. All normals within a superpixel are then

averaged, to get a single orientation for each superpixel.

The feature is computed as the difference of π
4 and the

(undirected) angle between the normals belonging to two

adjacent superpixels. An example is shown in Figure 3. The

change in normal orientation highlights that pillow and wall

are distinct objects, even though there is no strong distinction

in color or depth.

IV. EXPERIMENTS

We evaluate our approach on the public NYU depth V2

segmentation dataset of indoor scenes. The dataset comes

with a detailed annotation of 1449 RGB-D images belonging

to a wide variety of indoor scenes, categorized into 26 scene

classes. The annotation contains four semantic structural

classes: structure, floor, furniture and prop. There is an

additional “void” class, which is used for object boundaries

and hard-to-annotate regions. We follow the literature in

excluding these pixels completely from the evaluation. We

optimize our model for average class accuracy (the mean of

3http://pointclouds.org



TABLE I

QUANTITATIVE COMPARISON OF THE PROPOSED METHOD WITH THE LITERATURE.

ground structure furniture props class average pixel average

RF 90.8 81.6 67.9 19.9 65.0 68.3
RF + SP 92.5 83.3 73.8 13.9 65.7 70.1
RF + SP + SVM 94.4 79.1 64.2 44.0 70.4 70.3
RF + SP + CRF 94.9 78.9 71.1 42.7 71.9 72.3

Silberman et al. [1] 68 59 70 42 59.6 58.6
Couprie et al. [9] 87.3 86.1 45.3 35.5 63.5 64.5

Stückler et al. [12]† 95.6 83.0 75.1 14.2 67.0 70.9

The best value in each column is printed in bold†. The upper part of the table shows contributions by different parts of our pipeline. RF stands
for random forest prediction, RF + SP for aggregated random forests prediction within superpixels, RF + SP + SVM for an SVM trained on the unary
potentials, and RF + SP + CRF is our proposed pipeline. We optimized our approach for class average accuracy.
† Note that the work of Stückler et al. [12] is not directly comparable, as they integrated information over multiple frames, and did not measure accuracy
for pixels without valid depth measurement.

the diagonal of the confusion matrix), putting more emphasis

on the harder classes of props and furniture, which have

smaller area than structure and floor. The dataset is split

into 795 images for training and 654 images for testing. Our

approach is implemented using our PYSTRUCT library4. We

use SCIKIT-LEARN [18] for k-means clustering and the SVM

baseline.

All hyper-parameters were adjusted using 5-fold cross-

validation on the training set. The hyper parameters of the

random forests were found using the hyperopt frame-

work [19]. For the CRF model, the only hyper-parameters

are related to the superpixel segmentation, and the single

hyper-parameter C of the structural SVM formulation. These

were adjusted using grid search. We found 500 superpixels

per image to work best, which allow for a maximum possible

performance of 95% average class accuracy on the validation

set. Training of the random forests took about 15 minutes

on a NVIDIA GeForce GTX Titan. Training the structural

SVM took 45 minutes on a Xeon X5650 CPU. Prediction

using only the random forest takes 33 ms on average, while

segmentation and prediction using the structural SVM ap-

proximately take an additional 500 ms.

A. Results

Table I compares different components of our approach

with the literature. Please note that we first designed our

final model, using only the validation data. We now report

accuracies of simpler models for reference, but these results

were not used for model selection. To separate the influence

of loss-based training and the spatial reasoning of the CRF,

we also train a usual support vector machine (SVM) on the

unary potentials for comparison.

The random forest prediction, as reported in Stückler et al.

[12] is already quite competitive. Grouping into superpixels

slightly improves performance, by removing high-frequency

noise and snapping to object boundaries. Somewhat sur-

prisingly, using a standard unstructured SVM with rescaled

loss already advances the mean accuracy above the previous

state-of-the art. We attribute this mostly to the ability of the

SVM to exploit correlation between classes and uncertainty

within the superpixels. Additionally, the SVM has access

4http://pystruct.github.io

Fig. 4. Visualization of some of the learned potentials. The left potential
is on the feature encoding whether one superpixel is above the other in
the image. The right potential is applied to the relative depth between
superpixels. See section IV-A for details.

to the “height” feature, that was not included in the random

forest. This performance is still improved upon, both in class

average and pixel average performance by the learned CRF

approach, yielding the best published result so far for both

measures. The increase over the standard SVM is 1.5% for

class average accuracy and 2.0% for pixel average accuracy.

A visualization of the impact of each processing step

can be found in Figure 5, which shows prediction results

on the test set. The four prediction methods correspond to

the rows of Table I. The difference between the SVM and

CRF approaches are clearly visible, with the CRF producing

results that are very close to the ground truth in several

complex scenes. We found that our approach improves results

most for scenes with a clear geometric structure, which is

not surprising. We see that evidence from the random forest

is often very noisy, and biased away from the “props” class.

While the unstructured SVM can correct somewhat for the

class imbalance, it has no way to make larger areas consis-

tent, which the CRF can. On the other hand, performance of

the CRF deteriorates slightly on very crowded scenes with a

mixture of small furniture and prop objects, as can be seen in

the two right-most images. In these scenes, depth information

is often noisy, and it is hard to make geometric statements

on the superpixel level. As the input from the random forest

is also often of low quality for crowded scenes, the CRF has

little chance to recover.

Figure 4 visualizes two of the learned potential functions.

Higher values correspond to favored configurations. We did

not force potentials to be symmetric or anti-symmetric,

which makes interpretation of the figures a bit harder, but

increases performance. Edges are constructed to go from top



left to bottom right. Potentials below the diagonal are those

for an edge going from a label given by the column to the

one given by the row, while the ones above the diagonal

are for the opposite direction. For vertical alignment, one

would therfore expect to find anti-symmetric potentials.

However the left-right direction seems to also contain useful

information, breaking the symmetry. One can see that the

vertical alignment potential expresses that the floor is much

more likely to be below other classes. It also encodes the fact

that props rest on furniture, but not the other way around.

The potential of the depth feature encodes, for example, that

the ground is usually behind the other classes, while furniture

is in front of structures, such as the wall.

V. SUMMARY AND DISCUSSION

We introduce a CRF formulation for semantic segmen-

tation of structure classes in RGB-D images. We base our

model on the output of an efficient GPU implementation

of random forest, and model spatial neighborhood using a

superpixel-based approach. We combine color, depth and 3D

orientation features into an energy function that is learned

using the SSVM approach. By explicitly modeling 3D re-

lations in a fully learned framework, we improve the state-

of-the-art on the NYU V2 dataset for semantic annotation

of structure classes. While our approach allows modeling

of spatial relations, these are limited to local interactions.

In future work, these interactions could be extended to

larger areas using latent variable models or higher order

potentials [5]. Another possible line of future work is to

combine our approach with a more task-specific one, directly

including support plane assumptions into the model, as done

by Silberman et al. [1]. Finally, we could also combine our

single-frame approach with the approach of Stückler et al.

[12], which fuses individual views in 3D to exploit temporal

coherence. While this work did not explicitly address real

time application, the random forest implementation that we

build upon allows for real-time processing [12]. The SLIC

superpixel algorithm can also be implemented on GPU

in real-time, as was demonstrated by Ren and Reid [20],

and similarly the normal features we use also have real-

time capabilities [17]. Finally, fusion move inference for

our model is very efficient for our model, opening up the

possibility to implement our approach entirely in real time.
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Fig. 5. Qualitative evaluation of the CRF. The first three images illustrate errors in the original prediction that can be corrected, while the second two
images illustrate failure modes. Pixels marked as void are excluded from the evaluation. See the section IV-A for details.


