
Topological Features in Locally Connected RBMs

Andreas Müller, Hannes Schulz, and Sven Behnke

Abstract— Unsupervised learning algorithms find ways to
model latent structure present in the data. These latent struc-
tures can then serve as a basis for supervised classification
methods. A common choice for unsupervised feature discovery
is the Restricted Boltzmann Machine (RBM). Since the RBM
is a general purpose learning machine, it is not particularly
tailored for image data. Representations found by RBMs are
consequently not image-like. Since it is essential to exploit the
known topological structure for image analysis, it is desirable
not to discard the topology property when learning new repre-
sentations. Then, the same learning methods can be applied to
the latent representation in a hierarchical manner.

In this work, we propose a modification to the learning rule of
locally connected RBMs, which ensures that topological image
structure is preserved in the latent representation. To this end,
we use a Gaussian kernel to transfer topological properties of
the image space to the feature space. The learned model is
then used as an initialization for a neural network trained to
classify the images. We evaluate our approach on the MNIST
and Caltech 101 datasets and demonstrate that we are able to
learn topological feature maps.

I. INTRODUCTION

Many classifiers rely on well-designed features for high
performance. Since hand-crafting such features is infeasible
for complex data sets, a variety of methods were developed
to extract features from data in an unsupervised manner. As
unlabeled data is easy to acquire, methods which explain
the variance in the data without known labels are preferred.
One mean to this end is modeling the data distribution by
introducing latent variables. Generative graphical models,
such as Restricted Boltzmann Machines (RBM, [1]) are a
popular choice for this purpose. RBMs model correlations
of observed variables by introducing binary latent variables
(features) which are assumed to be conditionally independent
given the observed variables. This restriction is useful because,
in contrast to general Boltzmann Machines, a fast learning
algorithm exists (Contrastive Divergence [1]). RBMs are
generic learning machines and have been applied to many
domains, including text, speech, motion data, and images. In
the most commonly used form, however, they do not take
advantage of the topology of the input space. Especially
when applied to image data, fully connected RBMs model
long-range dependencies which are known to be weak in
natural images [2]. Typically (e.g. [3]), a sparsity constraint is
introduced, resulting in local receptive fields. On the negative
side, this approach wastes space and time, as large parts of
the parameter space have to be “unlearned”.

Another way to deal with the sparsity problem is to remove
long-range parameters from the model entirely. The advantage
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of this approach is two-fold: first, local connectivity serves as
a prior that matches well to the properties of natural images
and, second, the drastically reduced number of parameters
makes learning on larger images feasible.

While local receptive fields are well-established in dis-
criminative learning, their counterpart in the generative case,
which we call “impact area”, is not well understood. In [4],
we investigated the capabilities of stacked RBMs and RBM-
like graphical models with local impact area (LIRBMs) and
lateral connections. We showed that with an equal number
of parameters, these models are easier to train and give good
classification performance. We further demonstrated that with
the help of stacking global consistency can be enforced.

We now apply this architecture to much larger images than
common in the RBM literature. To obtain representations
of the data that are invariant to small transformations, like
translations, rotations, or scalings, we introduce a pooling
operation, similar to the common convolutional approach.
To do this on higher levels, we have to ensure that the
learned representations retain structural properties of natural
images. This is not the case in standard RBM approaches.
To this end, we propose a modification to the contrastive
divergence learning rule that enforces local coherence in
hidden representations. This learning rule results in locally
similar conditional probability distributions of latent variables.
This in turn causes filters with impact areas that are close
with respect to the image topology to be similar. Thereby,
we introduce a method that constitutes a trade-off between
the possibility to learn invariant filters (a property of the
widely used convolutional neural network) and the possibility
to learn locally adjusted filters (a property of the LIRBM).

We evaluate our approach on the MNIST and Caltech 101
datasets. We are able to learn meaningful features and
representations that exhibit local structural properties similar
to those in the original images. We further use the learned
topological features as an initialization for a locally connected
neural network that is trained for classification. We show
that this pretraining improves classification performance and
shortens training times.

II. BACKGROUND ON BOLTZMANN MACHINES (BM)

A BM is an undirected graphical model with binary
observed variables v ∈ {0, 1}n (visible nodes) and latent
variables h ∈ {0, 1}m (hidden nodes). The energy function
of a BM is given by

E(v,h, θ) = −vTWh− vT Iv − hTLh− bTv − aTh,

where θ = (W, I, L,b,a) are the model parameters, namely
pairwise visible-hidden, visible-visible and hidden-hidden
interaction weights, respectively, and b, a are the biases
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Fig. 1. Overview of our setup. v is the visible layer of a LIRBM, h1

is the hidden layer with multiple topographic maps (2 in this example). A
sample variable in h1 is shown to be connected to its respective local impact
area in v. p1 is a pooling layer, invariant to small translations and feature
transformations. After training a stack of n LIRBMs one by one, we connect
all units in all maps of the last pooling layer pn to all class-labelled output
units in c and perform supervised finetuning in the resulting network.

of visible and hidden activation potentials. The diagonal
elements of I and L are always zero. This yields a probability
distribution p(v)

p(v; θ) =
1

Z(θ)
p∗(v; θ) =

1

Z(θ)

∑
h

e−E(v,h,θ),

where Z(θ) is the normalizing constant (partition function)
and p∗(·) denotes unnormalized probability.

In RBMs, I and L are set to zero. Consequently, the
conditional distributions p(v|h) and p(h|v) factorize com-
pletely. This makes exact inference of the respective posteriors
possible. Their expected values are given by

〈v|h〉p = σ(Wh + b) and
〈h|v〉p = σ(Wv + b), (1)

where σ denotes element-wise application of the sigmoid
function

σ(x) = (1 + exp(−x))−1.

In practice, Contrastive Divergence (CD, [1]) is used to
approximate the true parameter gradient

∂ ln p(v)/∂wi,j = 〈vTh〉+ − 〈vTh〉−

by a Markov Chain Monte Carlo algorithm. Here 〈·〉+ and
〈·〉− refer to the expected values with respect to the data
distribution and model distribution, respectively. The expected
value 〈vTh〉+ can be calculated in closed form using the
formula for p(h|v). This calculation is called the “positive
phase”. The model distribution 〈vTh〉−, on the other hand,
can only be approximated using a Markov chain starting
from the data and using the transition operators given by
Equation (1). This process is termed the “negative phase”.
Recently, Tieleman [5] proposed a faster alternative, called
Persistent Contrastive Divergence (PCD), which employs a
persistent Markov chain to approximate 〈·〉−. We use PCD
throughout this paper.

Fig. 2. Selected Features from first, second and third hidden layer of
LIRBM. The impact area of units in higher layers increases and captures
more complex aspects of the input. The first row shows actual filters, the
second and third row show features of single hidden nodes projected down
to the visible layer.

RBMs can be stacked to build hierarchical models. The
training of stacked models proceeds layer-wise by training the
high-level models using the activations of the hidden nodes
of the already trained layer below as input.

III. LOCAL IMPACT RESTRICTED BOLTZMANN MACHINES

In [4], we introduced a modification to the architectures
of Section II called the Local Impact Restricted Boltzmann
Machine (LIRBM). LIRBMS have a restricted impact area
for each hidden node. To this end, we arranged the hidden
nodes in multiple maps, each of which resembles the visible
layer in its geometry. As a result, each hidden node hj can
be assigned a position pos(hj) ∈ N2 in the input (pixel)
coordinate system. This approach is similar to the common
approach in convolutional neural networks [6]. In contrast to
the convolutional procedure, we do not require the weights
to be equal for all hidden units within one map.

A common problem in training convolutional RBMs is that
the over-complete representation of the visible nodes by the
hidden nodes allows the filters to learn a trivial identity ([7],
[8]). The LIRBM does not suffer from this problem for two
reasons: First, we use PCD for training. This means even if
a training example can be perfectly reconstructed, there is
still a non-zero learning signal. This signal stems from the
dependency of the approximated gradient on the state of the
persistent Markov chain. Second, due to not sharing weights,
for a trivial solution to occur, all filters have to learn the
identity separately.

A. Topological Feature Maps

To obtain invariant features, it is common to arrange
features in a topological map (e.g. [9], [10], [11]), where
similar features are close to each other. All filters are then
applied to the input image and responses are grouped together
in neighborhoods which are local in the topological map. After



grouping, the features are invariant to transformations which
are local in the topology of the feature map.

In our architecture, we now introduce modifications to learn
multiple topological maps. Moreover, we endow the feature
maps with a topology which matches the input topology.
This is in contrast to previous work, where the topology of
the features was chosen arbitrarily. Specifically, we arrange
the features in the topology that is naturally given by the
geometry of each map defined in Section III. The structure of
the LIRBM (or RBMs, for that matter), however, is symmetric
with respect to hidden units with same impact area. We break
this symmetry by indirectly encouraging local filter similarity
within maps.

To this end, we propose a modification to the contrastive
divergence learning rule. During the positive phase, we
simulate local similarity using a local distance kernel. The
conditional distribution of the hidden units is given by:

p(hi|v) =
∑

j∈M(i)

1√
2πs

e
−
(

d(i,j)2

2s2

)
· σ

(∑
k

Wkjvk

)
. (2)

Here, s determines the degree of locality in the topological
map, d(i, j) = ‖pos(hi) − pos(hj)‖ denotes the Eucledian
distance of two latent variables in the map, and M(i) is
the set of all hidden units sharing a map with hi. The
negative phase is left unchanged. The idea behind the
local distance kernel is that during the positive phase, we
pretend that close latent variables have similar conditional
distributions. Contrastive divergence learning fits the model
distribution to the data distribution and consequently creates
features with locally similar activation patterns. Note that it
is not necessary to constrain the features directly: we rather
encourage neighboring hidden units within a map to react
to the same input patterns. The similarity of features then
emerges by virtue of the local statistics of natural images.
For inference, since filters are already ordered topologically,
the distance kernel is not necessary anymore and the hidden
activations are given by Equation (1) again.

B. Higher-Order Topological Feature Maps

Due to the local similarity of features within a map,
latent variable activities for a given input have an image-
like structure within a map: as in natural images, neighboring
positions are strongly correlated. Consequently, a coherent
grouping of features that are close within a map is possible.
Grouping can, for example, be performed by a simple
maximum pooling operation. This operation yields another,
more compact representation which is again locally coherent
and image-like. As these are the properties of the original
input, it is possible to train another LIRBM using the
pooled representations as its input. The resulting hierarchy of
representations is increasingly invariant to local distortions
and translations. Higher-order features can thus represent
more complex patterns by combining input from a specific
location across all maps in the layer below.

C. Initializing Neural Networks with Topological Features

In many object recognition applications, it was shown that
initializing the weight of a neural network with an unsuper-
vised feature extraction algorithm improved the classification
results. This procedure is commonly known as unsupervised
pretraining and supervised finetuning in the deep learning
literature.

We use a locally connected neural network (LCNN,
e. g. [12], [13]) for classification. Using the weights learned
in a Local Impact Restricted Boltzmann Machine for initial-
ization is straight-forward, since the arrangement of neurons
in a LCNN matches the arrangement of hidden nodes in the
LIRBM. This makes it possible to directly copy the weights
learned by the LIRBM into a LCNN. We then replace the
soft-max layers of the LIRBM by simple maximum pooling
layers. There are, however, no standard procedures for the
back-propagation of error through max-pooling layers when
no weight sharing is employed. Here, we use the simplest
way of performing gradient descent across the max-pooling
layer, by back-propagating the error only to the input node
that had the maximum activity in the forward pass. While
in principle, the same path could be taken every time the
output is calculated, the pre-training largely rules out these
pathological cases by providing sensible default filters. Finally,
we connect an output layer to the LIRBM by adding random
weights between each output (classification) unit and all units
in the last pooling layer of the LIRBM, respectively.

We can now proceed with the fine-tuning using gradient de-
scent (backpropagation of error). For this work, we employed
batch learning using RPROP [14] with default parameters to
minimize the cross-entropy error. First, the output layer, which
was not pretrained, is adjusted while all other weights remain
fixed. This prevents problems induced by large errors in the
randomly initialized weights of the output layer destroying
the pre-trained weights in earlier layers. After 50 epochs
the output weights have converged and we continue training
network as a whole.

D. GPU Acceleration

As the 2D structure of the input maps well to the
architecture of Graphics Processing Units (GPUs), we imple-
mented the proposed architecture using the NVIDIA CUDA
programming framework. To this end, we created a matrix
library which, apart from common dense-matrix operations
can operate on sparse matrices in diagonal format (DIA).
This enables us to efficiently process large images, where
the corresponding dense matrix W would not even fit in
memory. Specifically, we implemented H ← WTV and
V ← WH , where H and V are dense matrices containing
hidden/visible activations, respectively, and W is the LIRBM
weight matrix. Efficiency is further improved by processing 16
images in parallel. The gradient, ∆W ← V HT is calculated
by multiplying all blocks of V and H , where the resulting
block is cut by one of the diagonals in ∆W . For maximum
pooling operations we made use of routines provided by Alex



LCNN With Pretraining Without Pretraining

maps 1,2,4; no pooling 1.4 1.6
maps 1,2,4; max pooling 1.4 1.9
maps 1,4,8; no pooling 1.3 1.3
maps 1,4,8; max pooling 1.2 1.3

TABLE I
MNIST CLASSIFICATION ERROR IN PERCENT

Krizhevsky1. Our implementation, which focuses on ease of
use by exporting all functionality to Python and seamlessly
integrating with NumPy, gives an overall speedup of about
50 when compared to an optimized single CPU version. The
code is available at our website2.

IV. RELATED WORK

In the context of generative models of images, little work
has been done to exploit local structure. A well known
supervised learning approach that makes use of the local
structure of images is the convolutional neural network by
LeCun et al. [6]. LeCun’s ideas where transfered to the
field of generative graphical models by Lee et al. [7] and
Norouzi et al. [8]. Their models, which employ weight sharing
and max-pooling, discard global image statistics. Our model
does not suffer from this restriction. When training landscapes,
for example, our model would be able to learn, even on
the lowest layer, that there is always sky depicted in the
upper half of the image. In the neural networks context,
architectures which exhibit a similar local structure to ours
were investigated by Behnke [12] and have been applied
to natural images on a large scale by Uetz [15]. The latter
architecture proved to be competitive to state-of-the-art in
object recognition.

In our, as well as in convolutional architectures, the
activities of each feature map are a filtered version of the
input. However, in convolutional architectures, the same filter
is applied at each position of an image. Our topological
features, on the contrary, are adjusted specifically to the local
statistics at a given position.

Our model also shares some of the ideas with
Kavukcuoglu [9]: The authors learned a set of filters, placed
on a two dimensional grid, using a sparse coding algorithm.
Features are first learned on a topographical map and then
grouped according to proximity in the topology. While the
topology in [9] is artificially constructed, with no relation to
the input, our topology reflects and is adjusted to the topology
of the input space.

Other methods for topological filters are based on non-
negative matrix factorization (NMF, [16], [11]). However,
both methods do not learn features specific to the spatial
layout of the input.

Pretraining deep neural networks with unsupervised meth-
ods is covered extensively in the literature. Good surveys of
the state-of-the-art can be found in the papers of Bengio [17]
and Erhan et. al. [18].

1http://www.cs.utoronto.ca/˜kriz
2http://www.ais.uni-bonn.de/deep_learning

Fig. 5. MNIST samples and hidden activations. The first row shows sample
MNIST digits. The second row displays the respective hidden representations.
Each digit is represented with eight maps.

V. RESULTS

In our implementation, we used maximum pooling in 2×2
non-overlapping windows. The width s of the distance kernel
was set such that only direct neighbors influenced each other.

We trained our model on the MNIST dataset of handwritten
digits [6] and on the Caltech 101 [19] object categories
database. Training on both datasets was purely unsupervised.

A. MNIST

1) Unsupervised Feature Extraction: The MNIST dataset
consists of 60,000 training and 10,000 test images. The images
are centered gray scale images of handwritten digits. The size
of each image is 28× 28 pixels. We trained our hierarchical
model with three layers of LIRBMs, where the layers had
four, eight and 16 maps of topological features, respectively.
The size of the local impact area was set to 9× 9 pixels on
all layers. Training the model took approximately 30 minutes
on GPU. We first analyzed the learned feature maps. As
expected, the features within a map are locally similar and
vary smoothly between locations. In regions where the data
exhibits a large variance, each map concentrates on a different
aspect of the data. We show two learned feature maps of the
lowest layer in Figure 3. Higher-layer features exhibit similar
continuity properties.

Apart from visualizing the weight matrices directly, we
can also project down activation patterns corresponding to a
single high-level unit turned on, and the others clamped to
zero. To calculate the hidden activations of the lower layer,
we have to reverse the max-pooling operation. This is done
by supersampling and dividing the resulting activations by the
size of the pooling window. After projecting down all filters
of a given layer, we subtracted the mean from the resulting
activities in the image domain for visualization purposes.
We show sample features in Figure 2. Features of the first
hidden layer represent simple edge filters, while the filters
of the second hidden layer represent parts of numbers. The
third-layer features have a impact area large enough to cover
the whole image. Note, that despite the ad-hoc reversal of
max-pooling, filters are still quite pronounced.

2) Classification: In order to assess the fitness of the
extracted features for classification, we train a locally con-
nected neural network, as described in Section III-C. Since
we aim at comparing different learning methods, we do not
augment the training set with deformed or translated versions
of the training data, which generally guarantees performance
improvements (e. g. [6]).



Fig. 3. Two topographic feature maps learned on the MNIST dataset in our LIRBM model. The filters are clearly specific to the properties of the dataset
in their respective areas. Features vary smoothly with the topology but differ between maps.

Fig. 4. Topological learning on Caltech 101. The three leftmost columns display Caltech images (top) and their first-layer representations (bottom). The
four variations are the result of the four different filter maps. The rightmost column shows first-layer activations of the same LIRBM trained without
topographic feature maps.

We compare our approach with a vanilla fully connected
neural network, a locally connected network without pretrain-
ing and a pretrained network where the pretraining did not
use topological filters.

Using a parameter scan we found that the best result for
using a vanilla neural network are achieved with one hidden
layer containing 1000 neurons. Using this setup, we obtained
a test error of 1.7%, which serves as a baseline.

We used locally connected networks with two hidden layers
and two, four, eight or 16 maps per layer. The size of the
local receptive fields (or impact areas in the LIRBM) was

kept fixed to 9× 9. If pooling was applied, the size of the
pooling window was set to 2 × 2. Table I summarizes the
obtained results.

From the table it is clear that locally connected networks
have an advantage over fully connected networks. The use
of max-pooling layers does not significantly influence the
classification rate. Using maximum pooling, however, makes
the model more scalable since the upper layers decrease in
size and less parameters have to be learned and stored. We
find that the pre-trained neural networks perform best. The
influence of topological filters was also analysed. We found



that networks pretrained without topological filters performed
worse (1.32%) than networks which used topological filters
(1.18%). This tendency is expected to strengthen for deeper
networks as more dissimilar filters are pooled.

B. Caltech 101

Due to the local impact areas of our model, it is feasible to
train even on large images, which is not possible using fully
connected RBMs. We trained two models on the Caltech 101
dataset. We preprocessed the images by converting them to
gray scale and fit them into a 128×128 pixel image, keeping
the aspect ration constant. The images were padded to square
aspect ratio using their respective average gray level. We
further faded the image border into the padding to remove
side effects caused by the image edges.

To train on natural images, it is necessary to use Gaussian
visible units (see [20]). For this purpose, we normalized the
images such that each pixel has zero mean and unit variance.
The conditional distribution of the visible units after this
normalization is given by

p(v|h) ∝ N (Wh, 1).

We trained one standard LIRBM model and one using the
modified learning rule for topological feature maps. Both
models consisted of three hidden layers with four, eight and
eight maps, respectively. The training time for this model was
about one hour. Figure 4 shows sample inputs and activations
from both models. Only the hidden activations of the model
trained with topographic filter maps retain the image structure
and partly preserve local texture. Again, different filter maps
concentrate on different aspects of the image.

VI. CONCLUSION

In this work, we addressed the problem of learning locally
coherent representations in locally connected Restricted Boltz-
mann Machines. Locality is a desirable property of learning
algorithms especially on images, since local algorithms are
faster and can retain basic structural properties of the data.
However, when training a locally connected RBM in a
naı̈ve way, the resulting representations do not reflect local
correlations present in natural images. This loss of structure
prevents stacking of such models.

Here, we present a novel modification of the contrastive
divergence learning rule. We map the topology of the input
space to the hidden units and thereby encourage the learning
algorithm to learn similar features at neighboring positions.
The resulting activations then exhibit the desired properties.

We evaluated our method on the MNIST and Caltech 101
datasets and found that our topological features are useful
for classification and generate significantly more image-like
hidden representations when compared to models trained
without topological feature maps.

In future work, we are going to extend our hierarchical
learning architecture to (semi-) supervised fine-tuning using
deep Boltzmann machines and third order methods.
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