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Abstract. In this work we propose a new information-theoretic cluster-
ing algorithm that infers cluster memberships by direct optimization of a
non-parametric mutual information estimate between data distribution
and cluster assignment. Although the optimization objective has a solid
theoretical foundation it is hard to optimize. We propose an approximate
optimization formulation that leads to an efficient algorithm with low
runtime complexity. The algorithm has a single free parameter, the num-
ber of clusters to find. We demonstrate superior performance on several
synthetic and real datasets.

1 Introduction
Clustering data is one of the fundamental problems in machine learning. In
clustering, the goal is to divide data points into homogeneous subsets, called
clusters. Many different formulations of the clustering problem are given in the
literature. Most algorithms are based on ad-hoc criteria such as intra-cluster
similarity and inter-cluster dissimilarity. An alternative approach is to formalize
clustering using an information theoretic framework, where one considers inputs
as well as cluster assignments as random variables. The goal is then to find an
assignment of data points to clusters that maximizes the mutual information
between the assignments and the observations.

In this work, we rely on a non-parametric estimator of the data entropy to
find clusterings of maximum mutual information. The use of non-parametric
estimates allows a data-driven approach, without making strong assumptions on
the form of the data distribution. As a consequence, we obtain a very flexible
model that, e.g., allows non-convex clusters. The resulting objective is easy
to evaluate, but difficult to optimize over. We overcome this by proposing an
efficient approximate optimization based on the Euclidean minimum spanning
tree algorithm. Because the estimator and the optimization are both parameter-
free, the only free parameter of the algorithm is the number of clusters, which
makes it very easy to use in practice. The contributions of this work are:

• Proposing the use of a MST-based entropy estimator in information theoretic
clustering.

• Give a fast algorithm for a relaxed version of the resulting problem.
• Show the practicality on a number of synthetic and real datasets.

? This work was partially funded by the B-IT research school.
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2 Related Work

The most commonly used clustering algorithm is the k-Means algorithm, also
known as Lloyd’s algorithm [14, 13]. While k-Means often works well in practice,
one of its main drawbacks is the restriction in cluster shape. They are given by
the Voronoi tessellation of the cluster means and therefore always convex.

Another widely used method is spectral clustering [20, 16], which solves a
graph partitioning problem on a similarity graph constructed from the data.
While spectral clustering is much more flexible than k-Means it is quite sensitive
to the particular choice of graph construction and similarity measure. It is also
computationally expensive to compute, because clustering n points requires
computing the eigenvalues and -vectors of an n× n matrix.

Information theoretic approaches to clustering were first investigated in
the context of document classification. In this setting, training examples are
described by a discrete distribution over words, leading to the task of distributional
clustering, which was later related to the Information Bottleneck method by
[21]. This setting was described in detail by [4]. In distributional clustering, it
is assumed that the distribution of the data is known explicitly (for example as
word counts), which is not the case in our setting.

Later, Banerjee et al. [1] introduced the concept of Bregman Information,
generalizing mutual information of distributions, and showed how this leads to a
natural formulation of several clustering algorithms. Barber [2] construct a soft
clustering by using a parametric model of p(Y |X). The framework of mutual
information based clustering was extended to non-parametric entropy estimates
by Faivishevsky and Goldberger [5]. They use a nearest neighbor based estimator
of the mutual information, called MeanNN, that takes into account all possible
neighborhoods, therefore combining global and local influences. The approximate
mutual information is maximized using local search over labels.

Clustering algorithms based on minimum spanning trees have been studied
early on in the statistics community, due to their efficiency. One of the earliest
methods is single-link agglomerative clustering [8]. Single-link agglomerative
clustering can be understood as a minimum spanning tree-based approach in
which the largest edge is removed until the desired number of components is
reached. Zahn [23] refines this criterion by cutting edges that are longer than
other edges in the vicinity. This approach requires tuning several constants by
hand. More recently, Grygorash et al. [9] proposed a hierarchical MST-based
clustering approach that iteratively cuts edges, merges points in the resulting
components, and rebuilds the spanning tree. We will limit our discussion to the
most widely used algorithm from [8].

3 Information Theoretic Clustering Using Nonparametric
Entropy-Estimates

In general, the goal of clustering can be formulated as follows: given a finite
collection of samples x = (x1, . . . , xn), we want to assign cluster-memberships
y = (y1, . . . , yn), yi ∈ {1, . . . k} to these samples. We adopt the viewpoint of
information theoretic clustering of Gokcay and Principe [6], where the xi are
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considered i.i.d. samples from a distribution p(X), and the yi are found such that
the mutual information I(X,Y ) between the distribution p(X) and the assigned
labels p(Y ) is maximized. We can rewrite this objective as

I(X,Y ) = DKL(p(X, y) ‖ p(X)p(Y )) = H(X)−
k∑

y=1

p(Y=y)H(X |Y=y) (1)

where

• DKL =
∫
X p(X) ln(p(X)

q(X) )dX is the Kullback-Leibler divergence,

• H(X) =
∫
X p(X) ln(p(X))dX is the differential entropy, and

• H(X |Y=y) =
∫
X p(X |Y=y) ln(p(X |Y=y))dX is the conditional differen-

tial entropy.

Expressing the mutual information in terms of the entropy is convenient, since
the objective then decomposes over the values of Y . Additionally, H(X) is
independent of the distribution of Y and therefore does not influence the search
over y.

Because we are given only a finite sample from p(X), there is no way to
exactly compute I(X,Y ), and this is still true if we fix a set of cluster indicators
yi Possible ways to overcome this are:

1. Fit a parametric model p̂(X,Y | θ) to the observations.
2. Use a non-parametric model x̂ to approximate p(X,Y ).
3. Estimate H(X |Y ) directly using a non-parametric estimate.

We choose the third option, as it is the most flexible while avoiding the curse of
dimensionality that comes with using non-parametric density estimates.

Let xy be the set of xi with label y. Given a non-parametric density estimator
Hest we have Hest(xy) ≈ H(X |Y=y), leading to the clustering problem

max
y

−
k∑

y=1

p(Y=y)Hest(xy), (2)

where the probability p(Y=y) is given by the empirical frequency of y, p(Y = y) =
ny

n

for ny = |{i|yi=y}|
n .

3.1 Minimum Spanning Tree Based Entropy Estimation

From now on, we assume that X = Rd and p(X) is absolute continuous. This
setting allows the use of the non-parametric entropy estimate of Hero III and
Michel [10], that constructs a minimum spanning tree of the data and obtains an
estimate of the data entropy from the logarithm of the length of the spanning
tree. More precisely, the entropy estimate of a dataset x = (x1, . . . , xn) is given
by

Hmst(x) = d log(L)− (d− 1) log(n) + log(βd). (3)
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where L is the length of a minimum spanning tree T (x) of x and βd is an unknown,
but data-independent constant. The estimator Hmst is consistent in the sense
that Hmst(x)→ H(X) for n→∞ [10]. Using Equation (3) as a non-parametric
entropy estimate in Equation (2) yields the problem to maximize Î(x,y) with

Î(x,y) :=−
k∑

y=0

p(y)
[
d log(Ly)− (d− 1) log ny

]
+ C, (4)

=−
k∑

y=0

p(y)
[
d log(L̄y) + log ny

]
+ C ′ (5)

=− d
k∑

y=0

p(y) log(L̄y)−
k∑

y=0

p(y) log p(y) + C ′′ (6)

where ny is the cardinality of xy, Ly is the length of the minimum spanning tree

T (xy) and C, C ′ and C ′′ are constants independent of y. We defined L̄y :=
Ly

ny
,

the mean edge length per node in T (xy).
Equation (6) has a natural interpretation: The first term penalizes long

spanning trees, weighted by the size of the cluster. The second term favors a
high entropy of p(y), leading to balanced clusters. Note that there is a natural
trade-off between enforcing intra-cluster similarity, expressed through L and the
balancing of cluster sizes. This trade-off is similar to formulating an objective
in terms of a loss and a regularizer. In contrast to the “loss+regularizer” setup,
where the trade-off needs to be specified by the user, the trade-off in Equation (6),
given by the factor d, is a direct consequence of the entropy estimator.

The reliance on the dimensionality of the ambient space Rd can be seen as
the requirement that d is actually the intrinsic dimensionality of the data. This
requirement is made explicit in our assumptions of an absolute continuous data
density: If the support of p(X) was a lower-dimensional sub-manifold of Rd, p(X)
could not be absolute continuous.

3.2 Finding Euclidean Minimum Spanning Tree Clusterings

The objective given by Equation (4) is a non-linear combinatorial optimization
problem. It has two properties that make it hard to optimize:

1. The objective depends in a non-linear way on Ly. This makes linear pro-
gramming techniques, that proved successful for other combinatorial task,
not directly applicable.

2. Ly is defined in terms of minimum spanning trees. This set is hard to
characterize, as changing the cluster membership of a single node may change
the two minimum spanning trees involved completely.

For the above reasons, we propose a simple procedure to approximately solve
Equation (4). Consider a graph G with nodes x and edge weights given by the
Euclidean distances between points. The connected components of G induce a
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Algorithm 1 Information Theoretic MST-based Clustering

Input: Points x, desired number of clusters k.
Output: Clustering y of x
G← T (x)
for i = 0, . . . , k − 1 do

for Gj , j = 0, . . . , i connected components of G do
ej ← SplitCluster(Gj)

l← arg max
j

Î(Gj \ ej)

G← G \ el

function SplitCluster(G)
Pick arbitrary root x0 of G.
for node x starting from leaves do

wx ←
∑

c∈children(x)

wc + d(x, c)

nx ← 1 +
∑

c∈children(x)

nc

for node x starting from root do
w′x ← w′par(x) + wpar(x) − wx − d(x, par(x))

for e ∈ E(G), e = (c, p), p parent of c do
vc ← w′p + wp − wc − d(p, c)
mc ← n− nc

objective(e)← dmc ln(mc)− (d− 1)mc ln(vc) + dnc ln(nc)− (d− 1)nc ln(wc)

e∗ ← arg max
e∈E(G)

objective(e)

clustering y(G) of x, by assigning xi and xj the same cluster if and only if they
are in the same connected component of G. Define

Î(G) := −
k∑

y=0

p(y)
[
d log(LG,y)− (d− 1) log ny

]
, (7)

where y enumerates the connected components G0, . . . , Gk of G, ny = |V (Gy)| is
the number of nodes in Gy and LG,y =

∑
e∈E(Gy)

w(e) is the sum of the weights

of all edges in the connected component Gy. Then Î(G) ≥ Î(x,y(G)), by the
definition of the minimum spanning tree, and equality holds if and only if Gy is
the minimum spanning tree of its nodes for all y. We try to find a graph G with
k components, such that Î(G) is maximal. We can restrict ourself to optimizing
over the set F of forests over x with k components, as adding edges inside
connected components will only decrease the objective. Thus we can formulate
the clustering problem equivalently as max

G∈F
Î(G).

Optimization over forests remains hard, and we further restrict ourself to
solutions from G := {F ∈ F | F subgraph of T (x)} for a given minimum spanning
tree T (x), leading to the problem maxG∈G Î(G). This restriction allows for a very
fast, combinatorial optimization procedure.
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Fig. 1. Illustration of the optimization algorithm for k = 3 on synthetic dataset. Left :
Euclidean minimum spanning tree of the data. Center : The edge that yields the best
two-cluster partition in terms of Equation (4) was removed, yielding two connected
components. Right : Another edge from the forest was removed, resulting in the desired
number of three components. Note that the edge that are removed are not the longest
edges but form a trade-off between edge length and cluster size.

For the two class case, optimization of the above objective can be solved
exactly and efficiently by searching over all of G. This amounts to searching for
the edge e that maximizes Î(T (x) \ e). The naive algorithm that computes the
objective for each edge separately has run time that is quadratic in the number
of data points. To improve upon this, we use a dynamic programming approach
as described in Algorithm 1, in function SplitCluster, which has only linear
complexity. Using this algorithm, run time in the two cluster case is dominated
by computing T (x). We extend this algorithm to the case of more than two
clusters in a greedy way: Starting with the full spanning tree of x, we remove the
edge yielding the lowest value of Equation (7) until the number of components
equals the number of desired clusters. The overall procedure is summarized in
Algorithm 1, an illustration can be found in Figure 1. We refer to Algorithm 1
as Information Theoretic MST-based (ITM) clustering.

We use the dual-tree Boruvka algorithm [15] to compute the minimum span-
ning tree, which has runtime close to O(n log(n)α(n)). Here α is the inverse of the
Ackerman function, which grows so slowly as to be considered constant in practice.
The dynamic programming solution of Algorithm 1 has a run time of O(n) per
removed edge, leading to an overall run time of O(n log(n)α(n) +nk). The O(nk)
comes from a worst case scenario, in which each step in the hierarchical clustering
procedure only splits off a constant number of points. In a more realistic setting,
we expect that the individual clusters are much smaller than the original dataset.
In this case, the O(nk) factor would improve to O(n log(k)).

4 Experiments

We compared ITM to the popular k-Means algorithm [14, 13], to the MeanNN
algorithm of Faivishevsky and Goldberger [5] and to single-link agglomerative
clustering [8]. The similarities between single-link agglomerative clustering and
the proposed MST-based optimization make it a good baseline for tree-based
clustering approaches.

A comparison of ITM, MeanNN and the baseline methods, k-Means and
single link agglomerative clustering, in terms of their objective, optimization
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Fig. 2. Comparison of k-Means (left), MeanNN (center left), single link (center right)
and ITM (right) on four synthetic datasets. Without the need to tune parameters, ITM
can adjust to different cluster shapes. MeanNN is able to recover non-convex clusters
(third row) but often produces similar results to k-Means (second and last row). Single
link clustering is very sensitive to noise, as it does not take cluster size into account.

and complexity can be found in Table 1. We implemented the ITM clustering
procedure as well as MeanNN in Python. We used the k-Means implementation
available in the scikit-learn library [17]. We use the dual tree Boruvka algorithm
implemented in the mlpack machine learning library [3]. The source code is
available online†.

4.1 Experimental Setup

For both k-Means and MeanNN, we restart the algorithm ten times using different
random initializations, keeping the result with the best objective value. As ITM
is deterministic there is no need for random restarts. All of the algorithms we
compare work with a fixed number of clusters, which we set to the number of
classes in the dataset for all experiments.

As single link agglomerative clustering is sensitive to outliers, we set a hard
limit on the minimum number of samples per cluster of five for the quantitative
analysis.

4.2 Qualitative Results

Figure 2 shows qualitative results on three synthetic datasets. For well separated,
convex clusters, all four algorithms produce the same clustering (see top row). If
the structure of the data is more complex, the advantage of the proposed method
is apparent. Note that there was no need to specify any other parameters than

† https://github.com/amueller/information-theoretic-mst
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Table 1. Comparing properties of related algorithms.

Algorithm Objective Deterministic Complexity

k-Means
∑
y

∑
i,yi=y

‖xi − µy‖2 No O(nk) per iteration

MeanNN
∑
y

log

 1

|xy|
∑

i,j,yi=yj=y

‖xi − xj‖2
 No O(n2) per iteration

Single Link – Yes O(n logn)

ITM

k∑
y=0

dp(y) log(L̄y) + p(y) log p(y) Yes O(α(n)n logn+ nk)

the number of clusters to produce these results. It is also noteworthy that the
results of MeanNN are very close to those produces by k-Means in most cases.
This similarity can be explained by the close relation of the objective functions,
listed in Table 1.

4.3 Quantitative Results
We present results on several standard datasets from the UCI repository, se-
lecting datasets that span a wide range of combinations of number of samples,
features and clusters. To satisfy the assumption of absolute continuity of the
data distribution, we restrict ourself to data with continuous features.

We evaluated the experiments using the adjusted Rand index (ARI [11] and
normalized mutual information (NMI) [22], two popular measures of cluster
quality [7, 12]. The Rand index [19] between two clusterings counts on how
many pairs of points two clusterings agree. The adjusted Rand index contains a
calibration against chance performance.

Table 2 summarizes the results. The two entropy-based methods (MeanNN,
ITM) have a clear advantage of the other methods, with ITM finding better
clusterings than MeanNN in the majority of cases. The single link agglomerative
clustering procedure produces reasonable results on datasets with little noise
and well-separated clusters, but fails otherwise. When inspecting the results, we
observed that ITM produced several very small clusters on the faces dataset.
Indeed, increasing the minimum cluster size to 6 or more improved the results to
0.59/0.84. A possible explanation for this is that very small clusters make the
entropy estimate less reliable. The single-link method also benefited from this,
improving its results to 0.42/0.82. The run time of computing the ITM clustering
was dominated by the computation of the MST of the data. The implementation
in mlpack took 60 seconds on a desktop computer for usps, the largest dataset in
our experiments. The other methods had run times in the order of seconds, but
given the different implementations we used, this should not be interpreted as a
general statement about the speed of the individual methods.

5 Conclusions
In this work we proposed the use of a minimum spanning tree based, non-
parametric entropy estimator in information theoretic clustering, ITM. Thereby
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Table 2. Scores (ARI/NMI) of k-Means, MeanNN, single link agglomerative clustering
and ITM on several benchmark datasets (higher is better). The best score for each
dataset is printed in bold.

Dataset Results

Description n d k k-Means MeanNN SL ITM

digits 1797 64 10 0.62 / 0.71 0.67 / 0.76 0.10 / 0.50 0.85 /0.89
faces 400 4096 40 0.41 / 0.76 0.49 /0.80 0.08 / 0.69 0.02 / 0.49
iris 150 4 3 0.72 / 0.76 0.75 / 0.78 0.55 / 0.72 0.88 /0.87
usps 9298 256 10 0.52 / 0.61 0.54 /0.65 0.00 / 0.04 0.44 / 0.58
vehicle 846 18 4 0.10 / 0.15 0.09 / 0.11 0.00 / 0.04 0.10 /0.14
vowel 990 10 11 0.17 / 0.37 0.19 /0.40 0.00 / 0.16 0.20 / 0.39
waveform 5000 21 2 0.37 / 0.35 0.30 /0.38 0.00 / 0.00 0.23 / 0.22

we extended the work of Faivishevsky and Goldberger [5] to a more flexible and
efficient entropy estimate. We proposed an approximate optimization method
by formulating the clustering problem as a search over graphs. The resulting
algorithm is deterministic has sub-quadratic run time. Empirical comparisons
showed that the proposed method outperforms standard algorithms and the
non-parametric entropy based clustering of [5] on multiple benchmark datasets.
We demonstrated that ITM is able to detect non-convex clusters, even in the
presence of noise. In contrast to other algorithms that can handle non-convex
clusters, ITM has no tuning parameters, as the objective presents a natural
trade-off between balancing cluster sizes and enforcing intra-cluster similarity.

A limitation of the proposed algorithm is that it is based on the assumption
of an absolute continuous data distribution. This assumption eliminates the
possibility of using categorical variables and data that lies on a submanifold
of the input space. In future work we plan to investigate a way to overcome
this limitation, for example by estimating the intrinsic dimensionality of the
data [18]. We will also investigate optimizations of the objective Equation (7)
that go beyond the proposed method. Move-making algorithms seem a promising
way to refine solutions found by Algorithm 1. Branch and bound techniques could
provide an alternative approach.
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