
Methods for Learning Structured

Prediction in Semantic

Segmentation of Natural Images

Andreas Christian Müller

Methods for Learning Structured

Prediction in Semantic

Segmentation of Natural Images

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelm Universität Bonn

vorgelegt von

Andreas Christian Müller

aus

Offenbach am Main

Bonn, September 2013

Angefertigt mit Genehmigung

der Mathematisch-Naturwissenschaftlichen

Fakultät

der Rheinischen Friedrich-Wilhelms-Universität

Bonn

1. Gutachter Prof. Dr. Sven Behnke

2. Gutachter Prof. Dr. Jürgen Gall

Tag der Promotion: 19.08.2014

Erscheinungsjahr: 2014

II

Zusammenfassung

Automatische Segmentierung und Erkennung von semantischen Klassen in na-

türlichen Bildern ist ein wichtiges offenes Problem des maschinellen Sehens. In

dieser Arbeit untersuchen wir drei möglichen Ansätze der Erkennung: ohne

Überwachung, mit Überwachung auf Ebene von Bildern und mit Überwachung

auf Ebene von Pixeln.

Diese Arbeit setzt sich aus drei Teilen zusammen. Im ersten Teil der Arbeit

schlagen wir einen Clustering-Algorithmus vor, der eine neuartige, informations-

theoretische Zielfunktion optimiert. Wir zeigen, dass der vorgestellte Algorith-

mus üblichen Standardverfahren aus der Literatur gegenüber klare Vorteile auf

vielen verschiedenen Datensätzen hat. Clustering ist ein wichtiger Baustein in

vielen Applikationen des machinellen Sehens, insbesondere in der automatischen

Segmentierung.

Der zweite Teil dieser Arbeit stellt ein Verfahren zur automatischen Segmentie-

rung und Erkennung von Objektklassen in natürlichen Bildern vor, das mit Hilfe

von Supervision in Form von Klassen-Vorkommen auf Bildern in der Lage ist ein

Segmentierungsmodell zu lernen.

Der dritte Teil der Arbeit untersucht einen der am weitesten verbreiteten

Ansätze zur semantischen Segmentierung und Objektklassensegmentierung, Con-

ditional Random Fields, verbunden mit Verfahren der strukturierten Vorhersage.

Wir untersuchen verschiedene Lernalgorithmen des strukturierten Lernens, ins-

besondere im Zusammenhang mit approximativer Vorhersage. Wir zeigen, dass

es möglich ist trotz des Vorhandenseins von Kreisen in den betrachteten Nachbar-

schaftsgraphen exakte strukturierte Modelle zur Bildsegmentierung zu lernen.

Mit den vorgestellten Methoden bringen wir den Stand der Kunst auf zwei

komplexen Datensätzen zur semantischen Segmentierung voran, dem MSRC-21

Datensatz von RGB-Bildern und dem NYU V2 Datensatz von RGB-D Bildern

von Innenraum-Szenen. Wir stellen außerdem eine Software-Bibliothek vor, die

es erlaubt einen weitreichenden Vergleich der besten Lernverfahren für struktu-

riertes Lernen durchzuführen. Unsere Studie erlaubt uns eine Charakterisierung

der betrachteten Algorithmen in einer Reihe von Anwendungen, insbesondere

der semantischen Segmentierung und Objektklassensegmentierung.
III

Abstract

Automatic segmentation and recognition of semantic classes in natural images is

an important open problem in computer vision. In this work, we investigate three

different approaches to recognition: without supervision, with supervision on

level of images, and with supervision on the level of pixels. The thesis comprises

three parts.

The first part introduces a clustering algorithm that optimizes a novel information-

theoretic objective function. We show that the proposed algorithm has clear

advantages over standard algorithms from the literature on a wide array of datasets.

Clustering algorithms are an important building block for higher-level computer

vision applications, in particular for semantic segmentation.

The second part of this work proposes an algorithm for automatic segmentation

and recognition of object classes in natural images, that learns a segmentation

model solely from annotation in the form of presence and absence of object

classes in images.

The third and main part of this work investigates one of the most popular

approaches to the task of object class segmentation and semantic segmentation,

based on conditional random fields and structured prediction. We investigate

several learning algorithms, in particular in combination with approximate infer-

ence procedures. We show how structured models for image segmentation can

be learned exactly in practical settings, even in the presence of many loops in

the underlying neighborhood graphs. The introduced methods provide results

advancing the state-of-the-art on two complex benchmark datasets for semantic

segmentation, the MSRC-21 Dataset of RGB images and the NYU V2 Dataset or

RGB-D images of indoor scenes. Finally, we introduce a software library that al-

lows us to perform extensive empirical comparisons of state-of-the-art structured

learning approaches. This allows us to characterize their practical properties in

a range of applications, in particular for semantic segmentation and object class

segmentation.

V

Acknowledgements

First, I would like to thank my advisor Sven Behnke, who allowed me to pursue

my PhD in his department and who provided funding for my studies. I would

also like to thank Jürgen Gall for agreeing to be my second reader.

During my work on this dissertation, my ideas were shaped by many of my

fellow students and researchers. First and foremost I am in debt to Hannes

Schulz, whose feedback proved to be invaluable during my studies. I would like

to thank Christoph Lampert for hosting me as a visiting researcher at the IST

Austria. His guidance and advice helped me in directing my further research.

My thanks are also extended to Sebastian Nowozin for his collaboration, many

helpful discussions, and advice. I would also like to thank Carsten Rother for

allowing me to work with him at Microsoft Research Cambridge and hosting me

there.

The B-IT research school kindly provided funding for parts of my research,

which I am also thankful for.

I have been lucky to be a part of the scikit-learn community, whose de-

velopers have been a constant source of encouragement and inspiration to me.

My understanding of machine learning as well as software engineering has been

greatly affected by the continuing exchange with Olivier Grisel, Lars Buitinck,

Gaël Varoquax, Mathieu Blondel, Gilles Louppe, Arnaud Joly and others. In

particular I want to thank Vlad Niculae for his help during the formation of this

work.

I also thank my parents and my sister for their support.

Last but not least I am grateful to Anna Müller for her support, encouragement

and company. Thank you for giving me the strength needed for this endeavour.

VII

Contents

1 Introduction 1

1.1 List of Contributions . 5

1.2 Thesis Outline . 5

1.3 Publications . 6

2 Information Theoretic Clustering 9

2.1 Related Work . 10

2.2 Clustering using Non-Parametric Entropy Estimates 12

2.2.1 Minimum Spanning Tree Based Entropy Estimation . . . 13

2.2.2 Finding Euclidean Minimum Spanning Tree Clusterings . 14

2.2.3 Estimating Intrinsic Dimensionality 17

2.3 Experiments . 18

2.3.1 Experimental Setup . 19

2.3.2 Qualitative Results . 19

2.3.3 Quantitative Results . 20

2.4 Summary . 21

3 Weakly Supervised Object Segmentation 23

3.1 Related Work . 24

3.1.1 Object Segment Proposals 24

3.1.2 Multi-Instance Methods 25

3.1.3 Semantic Scene Segmentation using Weak Annotation . . 26

3.2 Multi-Instance Kernels for Image Segmentation 27

3.2.1 Constraint Parametric Min-Cuts (CPMC) 27

3.2.2 Multi-Instance Learning using MI-Kernels 27

3.2.3 Segment Features . 28

3.2.4 Combining Segments . 28

IX

Contents

3.3 Experiments . 29

3.3.1 Instance-Level Predictions using MI-Kernel 29

3.3.2 Partially Supervised Image Segmentation on Graz-02 . . . 30

3.4 Summary . 32

4 Learning Conditional Random Fields 33

4.1 Basic Concepts in Structured Prediction 34

4.1.1 Factor Graphs and the Relation to Graphical Models . . . 34

4.2 Learning Max-Margin Structured Prediction 37

4.2.1 Stochastic Subgradient Descent 38

4.2.2 The n-Slack Cutting Plane Method 39

4.2.3 The 1-Slack Cutting Plane Method 41

4.2.4 The BCFW Algorithm 42

4.3 Conditional Random Fields for Semantic Segmentation 45

4.3.1 Fundamentals of Conditional Random Fields 45

4.3.2 Data, Features and Superpixels 47

4.3.3 Previous Work . 48

4.4 Casting Structured Prediction into Software 49

4.4.1 Library Structure and Content 49

4.4.2 Project Goals . 51

4.4.3 Usage Example: Semantic Image Segmentation 52

4.4.4 Experiments . 52

4.5 Summary . 54

5 Empirical Comparison of Learning Algorithms 55

5.1 Datasets and Models . 55

5.1.1 Multi-Class Classification (MNIST) 55

5.1.2 Sequence Labeling (OCR) 56

5.1.3 Multi-Label Classification 57

5.1.4 2D Grid CRF (Snakes) 58

5.1.5 Superpixel CRFs for Semantic Segmentation 59

5.2 Experiments . 60

5.2.1 Experiments using Exact Inference 61

5.2.2 Experiments using Approximate Inference 66

5.3 Summary . 70

X

Contents

6 Learning Loopy CRF Exactly 73

6.1 Introduction . 73

6.2 Related Work . 74

6.3 Learning SSVMs with Approximate Inference 75

6.3.1 Bounding the Objective 75

6.4 Efficient Exact Cutting Plane Training of SSVMs 77

6.4.1 Combining Inference Procedures 77

6.4.2 Dynamic Constraint Selection 78

6.5 Experiments . 79

6.5.1 Inference Algorithms . 79

6.5.2 Semantic Image Segmentation 79

6.5.3 Caching . 80

6.5.4 Implementation Details 83

6.6 Summary . 84

7 Learning Depth-Sensitive Conditional Random Fields 85

7.1 Related Work . 86

7.2 Learning Depth-Sensitive Conditional Random Fields 88

7.2.1 Low Level Segmentation 88

7.2.2 Unary Image Features 90

7.2.3 Pairwise Depth-Sensitive Features 90

7.3 Experiments . 92

7.4 Summary and Discussion . 95

8 Conclusion 97

8.1 Future Directions . 98

9 Bibliography 101

XI

1 Introduction

Essentially, all models are wrong,

but some are useful.

George E. P. Box

In computer vision research, the goal is to automatically extract information from

a given image or image sequence. In particular discerning semantic information,

that is interpreting an image, is a prominent research topic. While much progress

has been made in recent years, computer vision systems still lag behind human

vision in most tasks that require semantic information. These tasks can often

be formulated in terms of semantic classes, meaning categories of parts, objects

or scenes. Examples include answering questions such as “Is this a picture of a

beach?”, “How many cars are there in this image?” or even “What objects lie on

the table?”. These questions illustrate a range of possible tasks involving semantic

categories, such as classifying images of single objects, localization and counting

of object classes, and parsing a scene fully into objects and object classes together

with their relations. While humans can distinguish tens of thousands of object

classes, and have little trouble in interpreting complex scenes, current methods

are often restricted to a much smaller number of classes and only have limited

capabilities to model interactions or relations. We believe that context is one

of the most important cues when it comes to classifying objects, and therefore

understanding scenes. Therefore, we target dense labeling of scenes, taking object

relations into account. The task of densely labeling image pixels into classes is

called object class segmentation or semantic segmentation.

1

1 Introduction

We choose this task in particular for the following reasons:

• Pixel-level annotation provides highly detailed information about the scene.

• Joint estimation of multiple classes allows for the use of context.

• In contrast to category-agnostic segmentation approaches, object class

segmentation has an unambiguous true labeling.

• A variety of manually annotated datasets is publicly available.

Applications of semantic segmentation and scene understanding include auto-

matic image interpretation for retrieval, autonomous driving and mobile robotics.

Besides these applications, due to the abundance of camera data and the prolifera-

tion of mobile computing, we expect semantic annotation of images to be a key

component in future technologies.

In the following we distinguish between the task of semantic segmentation,

which usually distinguishes unstructured “stuff” classes such as road and grass,

and object class segmentation, which denotes the segmentation of very structured

classes, such as cars, planes and people. We consider four different datasets

in this thesis: the object class segmentation datasets Graz-02 [Marszatek and

Schmid, 2007] and Pascal VOC 2010 [Everingham et al., 2010], and the semantic

segmentation datasets MSRC-21 [Shotton et al., 2006] and NYU V2 [Silberman

et al., 2012]. Examples can be found in Figure 1.1. Both tasks have the same

ultimate goal of parsing, and therefore understanding, images in terms of semantic

classes. However they employ different mechanisms to represent and process.

One of the bottlenecks in learning object class segmentation and semantic

segmentation is the availability of training data. While unlabeled image data, and

even data with semantic “tags” is available in practically unlimited quantities,

semantic annotation on pixel level is scarce and only available through laborious

manual annotation. Chapter 3 introduces an approach to cope with this short-

coming of object class segmentation approaches by introducing a method to learn

segmentation automatically from image level annotations.

The main part of this thesis investigates the use of structured learning [Taskar

et al., 2003, Tsochantaridis et al., 2006] algorithms to the task of semantic image

segmentation. Both topics have received much attention in the computer vision

and machine learning communities lately [Ladicky et al., 2009, Krähenbühl and

Koltun, 2012, Branson et al., 2013, Blake et al., 2011]. Unfortunately, learning

2

Figure 1.1: Examples from the MSRC-21 (top) and Pascal VOC (bottom) datasets with
ground-truth annotation. MSRC-21 contains mostly texture classes, such
as tree, building, street and sky, but also objects, like cars in this example.
Pascal VOC contains only object classes, such as person, cat, table and bottle,
and an additional background class (black).

structured prediction in computer vision applications is still little understood.

We focus on the use of conditional random fields (CRFs), which have shown

promising results for computer vision applications. Using the paradigm of struc-

tural support vector machines (SSVMs), it is possible to learn conditional random

fields to directly minimize a loss of interest. In particular, CRFs allow to com-

bine different cues, possibly produced using different paradigms in a principled

manner. One of the main difficulties with CRF approaches to computer vision

problems is that context in images is usually represented as a neighborhood graph

of pixels or superpixels. These graphs, by nature, contain many cycles, making

inference intractable in general. Consequently, learning algorithms have to rely

on approximate inference, with often unknown consequences to learning.

There have been several previous studies on learning structural support vector

machines, and learning for conditional random fields. The impact of approxi-

mate inference was first investigated by Finley and Joachims [2008], applying

structural support vector machines to multi-label data. Later, different works

investigated how to combine approximate inference and learning in a single frame-

3

1 Introduction

work. Meshi et al. [2010], Komodakis [2011], and Hazan and Urtasun [2010]

approached the problem using duality, and formulate learning and inference as a

joint optimization problem. Stoyanov et al. [2011], and later Jancsary et al. [2013]

and Krähenbühl and Koltun [2013] formulated learning structured prediction as

optimizing a prediction engine, that takes into account all aspects of the model,

in particular the inference algorithm used. In this work, on the other hand,

we follow the well-established algorithms for learning structural support vector

machines, and investigate how we can use the available inference algorithms to

obtain good results within a reasonable time-frame.

Nowozin et al. [2010] provided a detailed evaluation of different aspects of

learning object class segmentation, that is somewhat orthogonal to this work.

Their work considers the choice of features, number of superpixels and pairwise

potentials for conditional maximum likelihood learning of tree-structured CRFs.

Nowozin et al. [2010] also compared conditional maximum likelihood learning

with maximummargin learning, finding little difference in accuracy. We focus our

work on the more popular neighborhood graphs, which do not allow for efficient

inference. Therefore, conditional maximum likelihood learning is intractable in

our setting. We focus on the use of maximum-margin methods and their practical-

ity for semantic segmentation and object class recognition. For comparison, we

also evaluate these algorithms in settings where exact inference is possible. More

recently, Lucchi et al. [2013] proposed a novel algorithm for efficiently learning

structured prediction for semantic segmentation, using approximate inference. In

Chapter 6, we develop an algorithm that runs in similar time to the one proposed

by Lucchi et al. [2013], which is able to learn a CRF to the exact optimum on

the same dataset.

Some recent works use alternatives to the CRF approach to object class seg-

mentation, most notably Li et al. [2010] and Xia et al. [2012]. Li et al. [2010]

use a pool of candidate segments, which are ranked according to how object-like

they are. A generic ranking is followed by a per-class ranking, which outputs

whole-object hypotheses. The work was later extended using a more holistic

probabilistic approach by Li et al. [2013]. Xia et al. [2012] used sparse coding

of object masks on multiple scales together with a bag-of-word model. Their

objective jointly optimizes per-class shape masks and image-based per-instance

masks. While both approaches are highly promising, they are out of the scope of

this work.

4

1.1 List of Contributions

1.1 List of Contributions

This thesis contains the following contributions:

• Introducing a clustering algorithm that improves upon widely used ap-

proaches from the literature. Our algorithm yields better clusterings in

terms of known classes on a wide range of standard datasets.

• Demonstrating a scalable algorithm for weakly supervised object class

segmentation. The proposed method is able to learn to segment complex

object classes using image annotation alone.

• Providing a general and efficient open source software framework for

structured prediction.

• Analysing max-margin learning algorithms with exact and approximate

inference in different applications. We give a thorough evaluation of all

major SSVM learning algorithms in a wide array of application.

• Showing that exact learning for semantic segmentation and object class

segmentation is possible in practice, even in loopy graphs. We combine

fast inference, caching and inference algorithms which certify optimality to

learn a 1-slack SSVM.

• Learning 3D relations of semantic structure categories for indoor scenes.

We extend the CRF approach to learning spacial relations from RGB-D

data and improve upon the state-of-the-art in semantic annotation on the

NYU V2 dataset of indoor scenes.

1.2 Thesis Outline

Before we delve into semantic segmentation and object class recognition, we

first investigate a general clustering algorithm in Chapter 2. Clustering is an

important step in most semantic segmentation pipelines, in at least two places:

bottom-up segmentation and creation of dictionaries for feature learning. We

introduce a novel information theoretic algorithm that compares favorably with

algorithms from the literature. While we do not apply our algorithm to the task

of bottom-up segmentation, this is a promising avenue for future research.

5

1 Introduction

We introduce an algorithm for semi-supervised learning of object class segmen-

tation in Chapter 3, motivated by the difficulty of obtaining annotated training

data for semantic segmentation.

The central topic of this thesis, learning structured prediction for semantic

segmentation, is introduced in Chapter 4. This chapter also introduces our

software library for implementing structured learning and prediction algorithms.

Chapter 5 gives a quantitative comparison of the most widely used structured

prediction algorithms in diverse settings. In particular, we investigate learning

behavior when exact inference is intractable, including experiments for semantic

segmentation on the popular Pascal VOC dataset and the MSRC-21 dataset.

The problem of learning with approximate inference is investigated in Chap-

ter 6. We develop a strategy for efficient caching and a combination of inference

algorithms that allows us to learn SSVMs for semantic image segmentation exactly,

even though the involved factor graphs contain many loops. We demonstrate our

algorithm on the Pascal VOC 2010, where we are competitive with comparable

approaches, and MSRC-21 datasets where we improve upon the state-of-the-art.

Finally, Chapter 7 applies the methods developed in Chapter 4 and Chapter 6

to the problem of semantic annotation with structure classes in RGB-D data. We

demonstrate that we are able to learn meaningful spatial relations, and outperform

state-of-the-art methods on the NYU V2 datasets.

1.3 Publications

The main material of this thesis has either been published in conference proceed-

ings or has been submitted to conferences or journals. We now list the relevant

publications.

Chapter 2 Information Theoretic Clustering using Minimum Spanning Trees

Andreas C. Müller, Sebastian Nowozin and Christoph H. Lampert. Pub-

lished in the proceedings of the German Conference on Pattern Recogni-

tion.

Chapter 3 Multi-Instance Methods for Partially Supervised Image Segmentation

Andreas C. Müller and Sven Behnke. Published in the proceedings of the

IARP Workshop on Partially Supervised Learning.

6

1.3 Publications

Chapter 4 PyStruct - Structured Prediction in Python

Andreas C. Müller and Sven Behnke. Submitted to the Journal of Machine

Learning Research, Open Source Software track.

Chapter 6 Learning a Loopy Model for Semantic Segmentation Exactly

Andreas C. Müller and Sven Behnke. arXiv preprint 1309.4061, Submit-

ted to the International Conference on Computer Vision Theory and

Applications.

Chapter 7 Learning Depth-Sensitive Conditional Random Fields for Semantic

Segmentation

Andreas C. Müller and Sven Behnke. Submitted to the International

Conference on Robotics and Automation.

7

2 Information Theoretic

Clustering

Before we start our investigation of semantic segmentation and object class

segmentation, we look into a general purpose clustering algorithm. In clustering,

the goal is to divide data points into homogeneous subsets, called clusters. Many

different formulations of the clustering problem are given in the literature. In the

context of this work, clustering plays an important role in many respects:

• Clustering, as a purely unsupervised method, is on one end of the spectrum

of algorithms we investigate. When using per-image or per-pixel supervision

as in the later chapters, we can use clustering to calibrate our expectation of

what semi-supervised and supervised algorithms should be able to achieve.

• Clustering algorithms build the basis of most superpixel algorithms, and

better clustering algorithms can lead to better superpixel algorithms.

• As many other computer vision algorithms, our segmentation methods

depends on bag-of-feature representations of segments or images. These

are built using a vocabulary of visual words that is usually created via

clustering.

So not only is clustering one of the fundamental problems in machine learning,

it is also an important building block for other methods in this work. Most

algorithms are based on ad-hoc criteria such as intra-cluster similarity and inter-

cluster dissimilarity. An alternative approach is to formalize clustering using an

information theoretic framework, where one considers inputs as well as cluster

assignments as random variables. The goal is then to find an assignment of data

points to clusters that maximizes the mutual information between the assignments

and the observations.

9

2 Information Theoretic Clustering

In the following, we rely on a non-parametric estimator of the data entropy

to find clusterings of maximum mutual information. The use of non-parametric

estimates allows a data-driven approach, without making strong assumptions on

the form of the data distribution. As a consequence, we obtain a very flexible

model that, for example, allows non-convex clusters. The resulting objective is

easy to evaluate, but difficult to optimize over. We overcome this by proposing an

efficient approximate optimization based on Euclidean minimum spanning trees.

Because the estimator and the optimization are both parameter-free, the only free

parameter of the algorithm is the number of clusters, which makes it very easy to

use in practice. The non-parametric entropy estimate we are using is applicable

only if the data distribution is absolute continuous and therefore can not be

applied if the data lies on a proper submanifold. We show how to overcome this

obstacle in practice by using an estimate of the intrinsic dimensionality of the

data. The contributions of this chapter are:

• Proposing the use of a minimum spanning tree based entropy estimator in

information theoretic clustering.

• Giving a fast algorithm for a relaxed version of the resulting problem.

• Showing the practicality on a number of synthetic and real datasets.

• Extending the clustering to data on submanifolds by estimating intrinsic

dimensionality.

2.1 Related Work

The most commonly used clustering algorithm is the k-means algorithm, origi-

nally investigated by MacQueen [1967] and most commonly implemented using

Lloyd’s algorithm [MacQueen, 1967, Lloyd, 1982]. While k-means often works

well in practice, one of its main drawbacks is the restriction in cluster shape.

Clusters are given by the Voronoi tessellation of the cluster means and therefore

are always convex. Another drawback is the non-determinism of the procedure,

caused by the dependence on random initialization.

Another widely used method is spectral clustering [Shi and Malik, 2000, Ng

et al., 2002], which solves a graph partitioning problem on a similarity graph

10

2.1 Related Work

constructed from the data. While spectral clustering is much more flexible than

k-means it is quite sensitive to the particular choice of graph construction and

similarity measure. It is also computationally expensive to compute, because

clustering n points requires computing the eigenvalues and -vectors of an n×n

matrix.

Information theoretic approaches to clustering were first investigated in the

context of document classification. In this setting, training examples are described

by a discrete distribution over words, leading to the task of distributional cluster-

ing, which was later related to the Information Bottleneck method by Slonim and

Tishby [1999]. This setting was described in detail by Dhillon et al. [2003]. In

distributional clustering, it is assumed that the distribution of the data is known

explicitly (for example as word counts), which is not the case in our setting.

Later, Banerjee et al. [2005] introduced the concept of Bregman Information

in the clustering context, generalizing mutual information of distributions, and

showed how this leads to a natural formulation of several clustering algorithms.

Agakov and Barber [2006] constructed a soft clustering by using a parametric

model of p(Y |X). The framework of mutual information based clustering was

extended to non-parametric entropy estimates by Faivishevsky and Goldberger

[2010]. They use a nearest neighbor based estimator of the mutual information,

called MeanNN, that takes into account all possible neighborhoods, therefore

combining global and local influences. The approximate mutual information is

maximized using local search over labels.

Clustering algorithms based on minimum spanning trees (MSTs) have been

studied early on in the statistics community, due to their efficiency. One of the

earliest methods is single-link agglomerative clustering [Gower and Ross, 1969].

Single-link agglomerative clustering can be understood as a minimum spanning

tree-based approach in which the largest edge is removed until the desired number

of components is reached. Zahn [1971] refined this criterion by cutting edges

that are longer than other edges in the vicinity. This approach requires tuning

several constants by hand. More recently, Grygorash et al. [2006] proposed a

hierarchical MST-based clustering approach that iteratively cuts edges, merges

points in the resulting components, and rebuilds the spanning tree. We limit our

discussion to the most widely used algorithm from [Gower and Ross, 1969].

11

2 Information Theoretic Clustering

2.2 Clustering using

Non-Parametric Entropy Estimates

In general, the goal of clustering can be formulated as follows: given a finite

collection of samples x = (x1, . . . , xn), we want to assign cluster-memberships

y = (y1, . . . , yn), yi ∈ {1, . . . k} to these samples. We adopt the viewpoint of

information theoretic clustering of Gokcay and Principe [2002], where the xi are

considered i.i.d. samples from a distribution p(X), and the yi are found such that

the mutual information I(X, Y) between the distribution p(X) and the assigned

labels p(Y) is maximized. We can rewrite this objective as

I(X, Y) = DKL
(

p(X, Y) ‖ p(X)p(Y)
)

= H(X)−
k

∑

y=1

p(Y=y)H(X |Y=y)

(2.1)

where

• DKL
(

p(X) ‖ q(X)
)

=

∫

X

p(X) ln

(

p(X)

q(X)

)

dX is the Kullback-Leibler

divergence,

• H(X) =

∫

X

p(X) ln
(

p(X)
)

dX is the differential entropy, and

• H(X |Y=y) =

∫

X

p(X |Y=y) ln
(

p(X |Y=y)
)

dX is the conditional dif-

ferential entropy.

Expressing the mutual information in terms of the entropy is convenient, since

the objective then decomposes over the values of Y . Additionally, H(X) is

independent of the distribution of Y and therefore does not influence the search

over y.

Because we are given only a finite sample from p(X), there is no way to exactly

compute I(X, Y), and this is still true if we fix a set of cluster indicators yi.

Possible ways to overcome this are:

1. Fit a parametric model p̂(X, Y | θ) to the observations.

2. Use a non-parametric model x̂ to approximate p(X, Y).

3. Estimate H(X |Y) directly using a non-parametric estimate.

12

2.2 Clustering using Non-Parametric Entropy Estimates

We choose the third option, as it is the most flexible while avoiding the curse of

dimensionality that comes with using non-parametric density estimates.

Let xy be the set of xi with label y. Given a non-parametric density estimator

Hest we have Hest(xy) ≈ H(X |Y=y), leading to the clustering problem

max
y

−
k

∑

y=1

p(Y=y)Hest(xy), (2.2)

where the probability p(Y=y) is given by the empirical frequency of y:

p(Y = y) =
ny

n
, with ny =

∣

∣{i | yi = y}
∣

∣.

2.2.1 Minimum Spanning Tree Based Entropy Estimation

From now on, we assume that X = R
d and p(X) is absolute continuous. This

setting allows the use of the non-parametric entropy estimate of Hero III and

Michel [1999], that constructs a minimum spanning tree of the data and obtains

an estimate of the data entropy from the logarithm of the length of the spanning

tree. More precisely, the entropy estimate of a dataset x = (x1, . . . , xn) is given

by

Hmst(x) = d log(L)− (d− 1) log(n) + log(βd) (2.3)

where L is the length of a minimum spanning tree T (x) of x and βd is an

unknown, but data-independent constant. The estimator Hmst is consistent in

the sense that Hmst(x)→ H(X) for n→∞ [Hero III and Michel, 1999]. Using

Equation 2.3 as a non-parametric entropy estimate in Equation 2.2 yields the

problem to maximize Î(x,y) with

Î(x,y) :=−
k

∑

y=0

p(y)
[

d log(Ly)− (d− 1) log ny

]

+ C, (2.4)

=−
k

∑

y=0

p(y)
[

d log(L̄y) + log ny

]

+ C ′ (2.5)

=− d
k

∑

y=0

p(y) log(L̄y)−
k

∑

y=0

p(y) log p(y) + C ′′. (2.6)

13

2 Information Theoretic Clustering

Here ny is the cardinality of xy, Ly is the length of the minimum spanning tree

T (xy) and C, C ′ and C ′′ are constants independent of y. We defined L̄y := Ly

ny
,

the mean edge length per node in T (xy).

Equation 2.6 has a natural interpretation: The first term penalizes long span-

ning trees, weighted by the size of the cluster. The second term favors a high

entropy of p(y), leading to balanced clusters. Note that there is a natural trade-off

between enforcing intra-cluster similarity, expressed through L and the balancing

of cluster sizes. This trade-off is similar to formulating an objective in terms of

a loss and a regularizer. In contrast to the “loss+regularizer” setup, where the

trade-off needs to be specified by the user, the trade-off in Equation 2.6, given by

the factor d, is a direct consequence of the entropy estimator.

The reliance on the dimensionality of the ambient space R
d can be seen as

the requirement that d is actually the intrinsic dimensionality of the data. This

requirement is made explicit in our assumptions of an absolute continuous data

density: If the support of p(X) was a lower-dimensional sub-manifold of Rd,

p(X) could not be absolute continuous.

2.2.2 Finding Euclidean Minimum Spanning Tree

Clusterings

The objective given by Equation 2.4 is a non-linear combinatorial optimization

problem. It has two properties that make it hard to optimize:

1. The objective depends in a non-linear way on Ly. This makes linear

programming techniques, that proved successful for other combinatorial

tasks, not directly applicable.

2. Ly is defined in terms of minimum spanning trees. This set is hard to

characterize, as changing the cluster membership of a single node may

change the two minimum spanning trees involved completely.

For the above reasons, we propose a simple procedure to approximately solve

Equation 2.4. Consider a graph G with nodes x, an arbitrary set of edges, and

edge weights given by the Euclidean distances between points. The connected

components of G induce a clustering y(G) of x, by assigning xi and xj the same

14

2.2 Clustering using Non-Parametric Entropy Estimates

Figure 2.1: Illustration of the optimization algorithm for k = 3 on synthetic dataset.
Left: Euclidean minimum spanning tree of the data. Center: The edge that
yields the best two-cluster partition in terms of Equation 2.4 was removed,
yielding two connected components. Right: Another edge from the forest
was removed, resulting in the desired number of three components. Note
that the edges that are removed are not the longest edges but form a trade-off
between edge length and cluster size.

cluster if and only if they are in the same connected component of G. Define

Î(G) := −
k

∑

y=0

p(y)
[

d log(LG,y)− (d− 1) log ny

]

, (2.7)

where y enumerates the connected componentsG0, . . . , Gk ofG, ny = |V (Gy)| is

the number of nodes in Gy and LG,y =
∑

e∈E(Gy)
w(e) is the sum of the weights

of all edges in the connected component Gy. Then Î(G) ≥ Î
(

y(G)
)

, by the

definition of the minimum spanning tree, and equality holds if and only if Gy

is the minimum spanning tree of its nodes for all y. We try to find a graph

G with k components, such that Î(G) is maximal. We can restrict ourself to

optimizing over the set F of forests over x with k components, as adding edges

inside connected components only decrease the objective. Thus we can formulate

the clustering problem equivalently as

max
G∈F

Î(G). (2.8)

Optimization over forests remains hard, and we further restrict ourself to solu-

tions of the form G := {F ∈ F | F subgraph of T (x)} for a given minimum

spanning tree T (x), leading to the problem max
G∈G

Î(G). This restriction allows for

a very fast, combinatorial optimization procedure.

For the two class case, optimization of the above objective can be solved exactly

and efficiently by searching over all of G. This amounts to searching for the edge e

15

2 Information Theoretic Clustering

Algorithm 1 Information Theoretic MST-based Clustering
Input: Points x, desired number of clusters k.
Output: Clustering y of x
G← T (x)
for i = 0, . . . , k − 1 do

for Gj, j = 0, . . . , i connected components of G do
ej ← SplitCluster(Gj)

l ← argmax
j

Î(Gj \ ej)

G← G \ el

function SplitCluster(G)
Pick arbitrary root x0 of G.
for node x starting from leaves do

wx ←
∑

c∈children(x)

wc + d(x, c)

nx ← 1 +
∑

c∈children(x)

nc

for node x do
w′

x ← wx0
− wx

for e ∈ E(G), e = (c, p), p parent of c do
vc ← w′

p + wp − wc − d(p, c)
mc ← n− nc

objective(e) ← dmc ln(mc) − (d − 1)mc ln(vc) + dnc ln(nc) − (d −
1)nc ln(wc)

e∗ ← argmax
e∈E(G)

objective(e)

that maximizes Î
(

T (x) \ e
)

. The naive algorithm that computes the objective for

each edge separately has run time that is quadratic in the number of data points.

To improve upon this, we use a dynamic programming approach as described

in function SplitCluster of Algorithm 1 , which has only linear complexity.

Using this algorithm, run time in the two cluster case is dominated by computing

T (x). We extend this algorithm to the case of more than two clusters in a greedy

way: Starting with the full spanning tree of x, we remove the edge yielding the

lowest value of Equation 2.7 until the number of components equals the number

of desired clusters. The overall procedure is summarized in Algorithm 1, which

we call Information Theoretic MST-based (ITM) clustering. An illustration can be

found in Figure 2.1

16

2.2 Clustering using Non-Parametric Entropy Estimates

We use Prim’s algorithm combined with a ball tree data structure [Omohundro,

1989] for distance queries to compute the minimum spanning tree of the data.

While this procedure has no strong runtime guarantees, we found this faster in

practice than specialized algorithms for euclidean minimum spanning trees, which

achieve a better theoretical runtime ofO
(

n log(n)α(n)
)

[March, William B, Ram,

Parikshit, and Gray, Alexander G, 2010]. Here α is the inverse of the Ackerman

function. The dynamic programming solution of Algorithm 1 has a run time of

O(n) per removed edge, leading to an overall run time of O
(

n log(n)α(n) + nk
)

.

The O(nk) term comes from a worst case scenario, in which each step in the

hierarchical clustering procedure only splits off a constant number of points. In a

more realistic setting, we expect that the individual clusters are much smaller than

the original dataset. In this case, the O(nk) term would improve to O
(

n log(k)
)

.

2.2.3 Estimating Intrinsic Dimensionality

While assuming totally continuous densities is very natural from a theoretical

point of view, it can be a hindrance in practical applications. Often, the data is

assumed to lie on a submanifold, embedded in a higher-dimensional space. In this

case, the density is not totally continuous, and the dimensionality of the data can

not be taken as the dimensionality of the embedding space.

A particularly drastic example is the case of the dataset having less samples

than features. In this case, the data clearly lies even on a linear subspace of the

input space, and the dimensionality of the input space does not accurately reflect

the intrinsic dimensionality of the data. To overcome this problem, we use the

estimate of intrinsic dimensionality analyzed by Massoud Farahmand et al. [2007].

In their method, for each data point x, a local estimate d̂(x) of the dimensionality

at x is computed as

d̂(x) =
ln 2

ln
(

rk(x)/r⌊k/2⌋(x)
) . (2.9)

Here k is a fixed integer and rk(x) is the distance of x from its kth neighbor. We

follow Massoud Farahmand et al. [2007] and set k = ⌈2 lnn⌉. The final estimate

d̂ is then computed by averaging the estimates over all x

d̂ =
1

n

∑

x∈X

min
(

d̂(x), d
)

. (2.10)

17

2 Information Theoretic Clustering

Figure 2.2: Comparison of k-means (left), MeanNN (center left), single link (center
right) and ITM (right) on four synthetic datasets. Without the need to tune
parameters, ITM can adjust to different cluster shapes. MeanNN is able to
recover non-convex clusters (third row) but often produces similar results to
k-means (second and last row). Single link clustering is very sensitive to noise,
as it does not take cluster size into account.

We compute the density estimate once, prior to clustering, and then plug the

estimate d̂ into equation 2.7 in place of d. We found this estimate to work robustly

and give sensible results for all datasets we investigated. As we already used a

ball tree data structure to build the minimum spanning trees, we can reuse this

structure to compute rk. Consequently, estimating the dimensionality resulted

only in little computational overhead.

2.3 Experiments

We compared ITM to the popular k-means algorithm [MacQueen, 1967, Lloyd,

1982], to the MeanNN algorithm of Faivishevsky and Goldberger [2010] and

to single-link agglomerative clustering [Gower and Ross, 1969]. The similari-

18

2.3 Experiments

Algorithm Objective Det. Complexity

k-means
∑

y

∑

i,yi=y

‖xi − µy‖
2 No O(nk) per iteration

MeanNN
∑

y

log

1

|xy|

∑

i,j,yi=yj=y

‖xi − xj‖
2

 No O(n2) per iteration

Single Link – Yes O(n log n)

ITM
k

∑

y=0

dp(y) log(L̄y) + p(y) log p(y) Yes O
(

α(n)n log n+ nk
)

Table 2.1: Comparing properties of related algorithms. Det. stands for Deterministic

ties between single-link agglomerative clustering and the proposed MST-based

optimization make it a good baseline for tree-based clustering approaches.

A comparison of ITM, MeanNN and the baseline methods, k-means and

single link agglomerative clustering, in terms of their objective, optimization

and complexity can be found in Table 2.1. We implemented the ITM clustering

procedure as well as MeanNN in Python. We used the k-means implementation

available in the scikit-learn library [Pedregosa et al., 2011]. The source code is

available online∗.

2.3.1 Experimental Setup

For both k-means and MeanNN, we restart the algorithm ten times using different

random initializations, keeping the result with the best objective value. As ITM

is deterministic there is no need for random restarts. All of the algorithms we

compare work with a fixed number of clusters, which we set to the number of

classes in the dataset for all experiments.

As single link agglomerative clustering is sensitive to outliers, we set a hard

limit of five on the minimum number of samples per cluster for the quantitative

analysis.

2.3.2 Qualitative Results

Figure 2.2 shows qualitative results on three synthetic datasets. For well separated,

convex clusters, the four algorithms produce very similar clusters (see top row). If

∗❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴❛♠✉❡❧❧❡r✴✐♥❢♦r♠❛t✐♦♥✲t❤❡♦r❡t✐❝✲♠st

19

2 Information Theoretic Clustering

the structure of the data is more complex, the advantage of the proposed method

is apparent. Note that there was no need to specify any other parameters than

the number of clusters to produce these results. It is also noteworthy that the

results of MeanNN are very close to those produces by k-means in most cases.

This similarity can be explained by the close relation of the objective functions,

listed in Table 2.1.

2.3.3 Quantitative Results

We present results on several standard datasets from the UCI repository, selecting

datasets that span a wide range of combinations of number of samples, features and

clusters. To satisfy the assumption of absolute continuity of the data distribution,

we restrict ourself to data with continuous features.

We evaluated the experiments using the adjusted Rand index (ARI) [Hubert and

Arabie, 1985] a popular measure of cluster quality [Gomes et al., 2010, Kamvar

et al., 2003]. The Rand index [Rand, 1971] between two clusterings counts how

many pairs of points two clusterings agree on. The adjusted Rand index contains

a calibration against chance performance. We also measured normalized mutual

information (NMI) [Strehl and Ghosh, 2003], but do not report it here, as it

resulted in an identical ranking of the clustering algorithms.

Table 2.2 summarizes the results. The two entropy-based methods (MeanNN,

ITM) have a clear advantage of the other methods, with ITM finding better

clusterings than MeanNN in the majority of cases. We see that ITM does well

when the intrinsic dimensionality of the data matches the feature dimension, but

degraded otherwise (see faces and usps). Estimating the intrinsic dimensionality

of the data overcomes this weakness, and improves results in most cases. For

all but one dataset, either ITM or ITM with estimated intrinsic dimensionality

gives the best results of all considered algorithms. The single link agglomerative

clustering procedure produces reasonable results on datasets with little noise and

well-separated clusters, but fails otherwise. The run time of computing the ITM

clustering was dominated by the computation of the MST of the data.

20

2.4 Summary

Dataset Results

Description n d k k-means MeanNN SL ITM ITM ID

digits 1797 64 10 0.62 0.67 0.10 0.85 0.73
faces 400 4096 40 0.41 0.49 0.08 0.02 0.54
iris 150 4 3 0.72 0.75 0.55 0.88 0.88
usps 9298 256 10 0.52 0.54 0.00 0.44 0.64
vehicle 846 18 4 0.10 0.09 0.00 0.10 0.10
vowel 990 10 11 0.17 0.19 0.00 0.20 0.19
waveform 5000 21 2 0.37 0.30 0.00 0.23 0.23
mnist 70000 784 10 0.37 N/A† 0.00 0.50 0.77

Table 2.2: Adjusted Rand Index of k-means, MeanNN, single link agglomerative clus-
tering and ITM on several datasets (higher is better). ITM ID refers to ITM
using the estimated intrinsic dimensionality. The best score for each dataset is
printed in bold.
†We were unable to make MeanNN scale to 70000 data points, as storing the whole
pairwise distance matrix seems necessary.

2.4 Summary

In this chapter we proposed the use of a minimum spanning tree based, non-

parametric entropy estimator in information theoretic clustering, ITM. Thereby

we extended the work of Faivishevsky and Goldberger [2010] to a more flexible

and efficient entropy estimate. We proposed an approximate optimization method

by formulating the clustering problem as a search over graphs. The resulting

algorithm is deterministic and has sub-quadratic run time. Empirical comparisons

showed that the proposed method outperforms standard algorithms and the non-

parametric entropy based clustering of Faivishevsky and Goldberger [2010] on

multiple benchmark datasets. We demonstrated that ITM is able to detect non-

convex clusters, even in the presence of noise. In contrast to other algorithms that

can handle non-convex clusters, ITM has no tuning parameters, as the objective

presents a natural trade-off between balancing cluster sizes and enforcing intra-

cluster similarity. A limitation of the proposed algorithm is that it is based on

the assumption of an absolute continuous data distribution. We show that this

limitation can be overcome in practice by estimating the intrinsic dimensionality

of the data.

21

3 Weakly Supervised

Object Segmentation

Most algorithms for semantic image segmentation and object-class segmentation

work with strong supervision: a pixel-wise labeling of training images. In this

chapter we investigate a method that works with annotation which is much easier

to obtain: whole image labels. While we do not reach the accuracy of competing

fully supervised approaches, our efficient, weakly supervised method is potentially

able to scale to much larger datasets, without the need for time-consuming manual

annotation on pixel level.

Recently, several approaches have been proposed for weakly supervised seman-

tic segmentation. While these are close to our work, there are several important

distinctions. We address the task of object-class segmentation which concerns

object categories, while semantic segmentation approaches often focus on "stuff"

categories like "sky" and "road" which are more easily detected using simple

texture features. In contrast to, for example, Vezhnevets et al. [2011], who

build a joint model over all segmentation decisions, our approach is in principle

applicable to large datasets, the regime where weak annotation is most useful.

In our approach we work with a set of candidate segments, generated using

constrained parametric min-cuts [Carreira and Sminchisescu, 2010]. The pro-

cedure yields segments that are overlapping, object-like regions which serve as

candidates for object locations.

We formulate weakly supervised multi-class image segmentation as a multi-

instance problem based on these candidate segments. In multi-instance learn-

ing [Dietterich et al., 1997] each training example is given as a multi-set of

instances, called a bag. Each instance is represented as a feature vector x and a

label y. A bag is labeled positive if it contains at least one positive example and

negative otherwise.

23

3 Weakly Supervised Object Segmentation

During training only the labels of the training bags, not of the instances inside

the bags, are known. The goal is to learn a classifier for unseen bags. Formally,

let X be the set of instances. To simplify notation we assume that bags are simply

sets, not multi-sets. Then a bag is an element of the power set 2X and the task is

to learn a function

fMI : 2
X → {−1,+1}. (3.1)

Training examples are tuples (Xi, yi) of bags Xi ⊂ X and labels yi ∈ {−1,+1}.

It is assumed that the fMI function stems from a so-called underlying concept,

given by an (unknown) function fI : X → {−1,+1}, with

fMI(X) = max
x∈X

fI(x). (3.2)

Multi-instance learning is a natural formulation for image classification and

has been successfully applied to this task [Zhou and Zhang, 2006]. We propose

to go a step further and apply multi-instance learning to the task of object-class

segmentation in natural images by also classifying instances, not only bags. In

this we follow the work of Li and Sminchisescu [2010] and Zha et al. [2008],

who not only learned fMI , but also fI . In our model each image forms a bag,

while the candidate segments correspond to the instances contained in the bag.

During learning only presence of object classes is needed as bag-level supervision.

By learning fI , we are then able to predict for individual segments whether they

contain the object class of interest, thereby obtaining a segmentation of the object.

To measure the performance of our algorithm we use a dataset that not only

contains image-level annotation, but also pixel-level annotation of object. This

allows us to judge the success of learning on instance level.

3.1 Related Work

3.1.1 Object Segment Proposals

Most work on multi-class segmentation focuses on strong supervision on super-

pixel level. There is still little work on using candidate segments. The method

we use for generating candidate segments is Constraint Parametric Min-Cuts

(CPMC) of Carreira and Sminchisescu [2010]. This method creates a wide variety

24

3.1 Related Work

of overlapping segments. Support vector regression (SVR) is trained on these

segments to estimate the overlap of segments with ground truth object-class

labeling from the Pascal VOC dataset [Everingham et al., 2010]. This provides

a ranking of candidate segments according to how “object-like” they are, which

allows for selecting only a limited number of very object-like segments. The

method performed well on a variety of datasets, building the basis of a very

successful entry to the Pascal VOC segmentation challenge [Li et al., 2010]. A

similar approach to whole-object segment proposals was investigated by Endres

and Hoiem [2010], but they did not compare their results with the state-of-the-art

approach of Carreira and Sminchisescu [2010].

3.1.2 Multi-Instance Methods

Multi-instance learning was formally introduced by Dietterich et al. [1997].

Since then, many algorithms were proposed to solve the multi-instance learning

problem [Andrews et al., 2003, Gärtner et al., 2002, Zhou et al., 2009, Li et al.,

2009, Zhang and Goldman, 2002, Mangasarian and Wild, 2008, Leistner et al.,

2010, Chen et al., 2006]. We discuss only those that are relevant to the present

treatment.

Gärtner et al. [2002] introduced the concept of a multi-instance kernel on bags,

defined in terms of a kernel on instances. The basic principle of the multi-instance

kernel is similar to a soft-max over instances in each bag. This can be viewed as

approximating the kernel value of the “closest pair” given by two bags. Gärtner

et al. [2002] showed that the multi-instance kernel is able to separate bags if

and only if the original kernel on instances is able to separate the underlying

concepts. The method of multi-instance kernels has a particular appeal in that

it transforms a multi-instance problem into a standard classification problem by

using an appropriate kernel. The downside of this approach is that it does not

directly label instances, only bags.

Zhou et al. [2009] explicitly addressed the fact that instances are not indepen-

dent within a bag , leading to an algorithm that can take advantage of possible

correlations. Computational costs of their algorithm does not scale well with

the number of instances, although a heuristic algorithm is proposed to overcome

this restriction. Zhou et al. [2009] demonstrated only a slight advantage of their

algorithm over the MI-kernel of Gärtner et al. [2002], so we use the MI-kernel

for better scalability.

25

3 Weakly Supervised Object Segmentation

Li and Sminchisescu [2010] computed likelihood ratios for instances, giving a

new convex formulation of the multi-instance problem. Using these likelihood

ratios, classification can be performed directly on the instances, provided an

appropriate threshold for classifying instances as positive is known. We circum-

vent this problem by applying the same classifier to instances and bags, thereby

obtaining hard class decisions for each instance.

3.1.3 Semantic Scene Segmentation using Weak

Annotation

Learning semantic segmentation from image-level annotation was first investi-

gated in Verbeek and Triggs [2007], using a semi-supervised conditional random

field on patches. Verbeek and Triggs [2007] evaluated their approach on the

MSRC-9 datasets. More recently, similar approaches were proposed by Vezhn-

evets et al. [2011] and Vezhnevets and Buhmann [2010]. Vezhnevets et al. [2011]

independently developed a multiple-instance based approach to segmentation,

and report impressive results on the MSRC-21 dataset.

While semantic segmentation is closely related to the task of multi-class im-

age segmentation that we are considering in this chapter, there are important

distinctions: In semantic segmentation, each pixel has a semantic annotation, also

containing non-object “stuff” classes like “sky”, “grass” and “water”. In multi-class

image segmentation, the focus is on objects, with possibly large parts of the image

being labeled as unspecific “background”. The unspecific background class con-

tains much more clutter than for example “grass” and is therefore much harder to

model. Additionally, object classes themselves are much harder to capture using

low-level textural information only. This makes disseminating the distinctive

features in multi-class object recognition much more challenging, and requires a

more holistic approach to recognition than these patch-based or superpixel-based

approaches.

26

3.2 Multi-Instance Kernels for Image Segmentation

3.2 Multi-Instance Kernels for Image

Segmentation

3.2.1 Constraint Parametric Min-Cuts (CPMC)

To generate proposal segments, we use the Constraint Parametric Min-Cuts

(CPCM) method of Carreira and Sminchisescu [2010]. In CPMC, initial segments

are constructed using graph cuts on the pixel grid. The energy function for these

cuts uses pixel color and the response of the global probability of boundary

(gPb) detector [Maire et al., 2008]. As much as ten thousand initial segments

are generated from foreground and background seeds. A fast rejection based on

segment size and ratio cut [Wang and Siskind, 2003] reduces these to about 2000

overlapping segments per image. Then, the segments are ranked according to a

measure of object-likeness that is based on region and Gestalt properties. This

ranking is computed using an SVR model [Carreira and Sminchisescu, 2010],

which is available online. For computing the global probability of boundary

(gPb), we used the CUDA implementation of Catanzaro et al. [2009], which

provides a speedup of two orders of magnitude over the original implementation.

3.2.2 Multi-Instance Learning using MI-Kernels

Since scalability is very important in real-world computer vision applications,

and natural images might need hundreds of segments to account for all possible

object boundaries, we use the efficient multi-instance kernel [Gärtner et al.,

2002]. Multi-instance kernels are a form of set kernels that transform a kernel on

instance level to a kernel on bag level. We reduce the multi-instance multi-class

problem to a multi-instance problem by using the one-vs-all approach.

With kI denoting a kernel on instances x, x′ ∈ X , the corresponding multi-

instance kernel kMI on bags X,X ′ ∈ 2X is defined as

kMI(X,X
′) :=

∑

x∈X,x′∈X′

kpI (x, x
′), (3.3)

where p ∈ N is a free parameter [Gärtner et al., 2002]. As we use the RBF-kernel

krbf as kernel on X and powers of RBF-kernels are again RBF-kernels, we do not

consider p explicitly in the following.

27

3 Weakly Supervised Object Segmentation

We normalize the kernel kMI [Gärtner et al., 2002] using

k(X,X ′) :=
kMI(X,X

′)
√

kMI(X,X)kMI(X ′, X ′)
. (3.4)

Training an SVM with this kernel produces a bag-level classifier for each class,

which we refer to as MIK. This procedure is very efficient since the resulting

kernel matrix is of size of the number of bags, which is much smaller than a

kernel matrix of size of the number of instances, as is commonly used in the

literature [Andrews et al., 2003, Nguyen, 2010]. Another advantage over other

methods is the use of a single convex optimization, whereas other approaches

often use iterative algorithms [Andrews et al., 2003] or need to fit complex

probabilistic models [Zha et al., 2008].

While using MIK has many advantages, it produces only an instance-level

classifier. We propose to transform a bag-level classifier fMI as given by the SVM

and Equation 3.3 into an instance-level classifier by setting fI(x) := fMI({x}), in

other words, by considering each instance as its own bag.

3.2.3 Segment Features

To describe single segments, we make use of densely computed SIFT [Lowe, 2004]

and ColorSIFT [van de Sande et al., 2010] features on multiple scales, from which

we compute bag-of-visual-word histograms. Additionally, we use a pyramid of

histograms of oriented gradients [Dalal and Triggs, 2005] on the segments. We

use RBF-kernels for all of the features, constructing one MI-kernel per feature.

These are then combined using multiple kernel learning to produce a single kernel

matrix. This kernel matrix can then be used for all classes, making classification

particularly efficient.

3.2.4 Combining Segments

The framework described above yields an image-level and a segment-level classi-

fication. To obtain a pixel-level object-class segmentation, we have to combine

these. Since we do not make use of the ground truth segmentation during training,

we cannot learn an optimal combination as Li et al. [2010] did, but perform a

simple majority vote instead.

28

3.3 Experiments

“person”

“person”

recalltraining
segmentation f(x)

Figure 3.1: Schematic overview. See text for details.

We merge segments into pixel-level class labels by setting the label yx of a pixel

x according to:

yx = argmax
y∈Y

|{Si|x ∈ Si ∧ ySi
= y}|, (3.5)

Here Y is the set of possible object classes, Si enumerates all segments within an

image and ySi
is the label of segment Si. In other words each pixel is assigned

the class with the highest number of class segments containing it. This simple

heuristic yields good results in practice.

3.3 Experiments

3.3.1 Instance-Level Predictions using MI-Kernel

To assess the validity of instance-level predictions using multi-instance kernels, we

transform fI back to an instance-level classifier, using the multi-instance learning

assumption (Equation 3.2). We refer to these instance-based MIK predictions as

MIK-I. In all experiments, the parameters of the MI-Kernel and SVM are adjusted

using MIK and then used with both MIK and MIK-I. This facilitates very fast

parameter search since MIK is very efficient to compute. Note that we cannot

adjust parameters using instance prediction error, as we assume no instance labels

to be known.

We compared the performance of MIK, MIK-I and state-of-the-art MI methods

on the Musk benchmark datasets [Dietterich et al., 1997] in Table 3.1. Results

were obtained using 10-fold cross-validation. While the computational complexity

of MIK-I is very low compared to the other methods, it achieves competitive

29

3 Weakly Supervised Object Segmentation

SVM-SVR EMDD mi-SVM MI-SVM MICA MIK MIK-I

Musk1 87.9 84.9 87.4 77.9 84.3 88.0 88.0
Musk2 85.4 84.8 83.6 84.3 90.5 89.3 85.2

Table 3.1: Bag-level accuracy (in percent) of various MIL algorithms on the standard
Musk datasets. All but MIK provide instance-level labeling.

Musk1 Musk2

accuracy witness-rate accuracy witness-rate

mi-SVM 87.4 100 83.6 83.9
SVM-SVR 87.9 100 85.4 89.5
MIK-I 88.0 99 85.2 62.3

Table 3.2: Bag-level Accuracy of MIL algorithms on the Musk datasets and the empirical
witness rates of the classifiers (both in percent).

results. Using instance-level labels results in a slight loss of accuracy of MIK-I,

compared to MIK. Interestingly, even though the model was not trained to

provide any instance-level labels, the performance is still competitive.

For multi-class image segmentation, it is beneficial to have a low witness rate,

that is only a few instances are assumed to be positive in a positive bag. Since

an object might not be very prominent in an image, only a fraction of segments

might correspond to the object. Table 3.2 compares the witness rates of MIK-I,

miSVM [Andrews et al., 2003] and SVR-SVM [Li and Sminchisescu, 2010] on the

Musk datasets. MIK-I is able to achieve similar accuracy with much less witnesses

than the other methods. Note that Musk1 consists of very small bags while

Musk2 contains significantly larger bags, more similar to the setup concerning

images and segments.

3.3.2 Partially Supervised Image Segmentation on

Graz-02

We evaluate the performance of the proposed algorithm for object-class segmen-

tation on the challenging Graz-02 dataset [Marszatek and Schmid, 2007]. This

dataset contains 1096 images of three object classes, bike, car and person. Each

image may contain multiple instances of the same class, but only one class is

present per image.

30

3.3 Experiments

Figure 3.2: Qualitative results on the Graz-02 dataset. Top: Results on category “car”.
Bottom: Results on category “person”. From left to right: original image,
ground truth segmentation, segment votes for correct class, segment votes
against correct class (red many, blue few votes).

car bike person

MIL-MKL (our approach) 30 45 43
Best strongly supervised approaches [Fulk-
erson et al., 2009, Schulz and Behnke, 2011]

72 72 66

Table 3.3: Pixel-level accuracy (in percent) on the Graz-02 dataset.

We adjusted parameters on a hold-out validation set using bag-level information

and used the training and test sets as specified in the dataset. We train one multiple

kernel learning (MKL) SVM per class using MIK and predict class labels on

segment level using MIK-I. This yields a classification of each segment into one of

four classes: car, bike, person, or background. We merge segments into pixel-level

class labels as described in Section 3.2.4.

Per-class pixel accuracies are reported in Table 3.3; some qualitative results are

shown in Figure 3.2. The overall accuracy on images labels, which is the task that

was actually trained, is 90%. While the performance of our multiple-instance

based approach is far from current methods that use pixel-level annotations, whose

pixel-level accuracy is around 70% [Fulkerson et al., 2009, Schulz and Behnke,

2011], it can serve as a baseline for research on weakly supervised methods for

object-class segmentation.

31

3 Weakly Supervised Object Segmentation

3.4 Summary

We proposed an algorithm for object-class segmentation using only weak su-

pervision based on multiple-instance learning. In our approach each image is

represented as a bag of object-like proposal segments.

We described a way to extent bag-level predictions made by the multi-instance

kernel method to instance level while remaining competitive with the state-of-

the-art in bag label prediction.

We evaluated the proposed object-class segmentation method on the challenging

Graz-02 dataset. While not reaching the performance of methods using strong

supervision, our result can work as a baseline for further research into weakly

supervised object-class segmentation.

32

4 Learning

Conditional Random Fields

Many classical computer vision applications such as stereo, optical flow, semantic

segmentation and visual grouping can be naturally formulated as image labeling

tasks. Arguably the most popular way to approach such labeling problems is via

graphical models, such as Markov random fields (MRFs) and conditional random

fields (CRFs). MRFs and CRFs provide a principled way of integrating local

evidence and modeling spatial dependencies, which are strong in most image-

based tasks. While in earlier approaches, model parameters were set by hand

or using cross-validation, more recently parameters are often learned using a

max-margin approach.

Most models employ linear energy functions of unary and pairwise interactions,

trained using structural support vector machines (SSVMs). While linear energy

functions lead to learning problems that are convex in the parameters, complex

constraints complicate their optimization.

In recent years there has been a wealth of research in methods for learning

structured prediction, as well as in their application in areas such as natural

language processing and computer vision (see Nowozin and Lampert [2011] for

an introduction and Blake et al. [2011] for a recent survey). In this chapter,

we first introduce the concepts and algorithms used in structured prediction, in

particular in maximum margin methods. Then, we review the use of CRFs in

computer vision, and introduce our methods. Finally we give a description of

our open source implementation of structured learning algorithms, PyStruct.

33

4 Learning Conditional Random Fields

4.1 Basic Concepts in Structured Prediction

Structured prediction can be defined as making a prediction f(x) by maximizing

a compatibility function g between an input x and possible labels y [Nowozin

and Lampert, 2011]:

f(x) = argmax
y∈Y

g(x, y) (4.1)

Finding y in the above equation is often referred to as inference or prediction.

We will use the most common approach of using a linear parametrization of g,

which leads to

f(x) = argmax
y∈Y

θTΦ(x, y). (4.2)

Here, y is a structured label, Φ is a joint feature function of x and y, and θ contains

the parameters of the model. Structured means that y is more complicated than

a single output class, for example a label for each word in a sentence or a label

for each pixel in an image. Learning structured prediction means learning the

parameters θ from training data. The particular model that is used is completely

encoded in Φ(x, y), which manifests the relation between input x and output y.

As Y is typically very large, it is crucial to exploit the particular form of Φ(x, y)

to solve the prediction problem of Equation 4.2.

While y could be complicated like a parse tree or the geometric configuration

of a molecule, many settings, such as the image segmentation setting we are

interested in, can be reduced to the case where y is a vector of discrete labels

Y = {1, . . . , k}n. In the following, we only discuss this multivariate case. In

general, n is often different for different inputs x, such as images with different

numbers of pixels. We ignore this in our notation to simplify the presentation.

4.1.1 Factor Graphs and the Relation to Graphical Models

In the case when y is multivariate, a very general and widely used method to

specify the structure of a model, and therefore Φ, is using factor graphs. A factor

graph is a bipartite graph (V ,F , E), consisting of variable nodes V , factor nodes

F and edges E connecting variables to factors. The scope NF of a factor F ∈ F is

defined as

NF = {v ∈ V | (v, F) ∈ E} (4.3)

34

4.1 Basic Concepts in Structured Prediction

The variable nodes of the factor graph correspond to the entries of the variables y,

that is V = {1, . . . , n}, and each factor node is associated with a factor or potential

function ψF . A factor graph represents a function∗

g(x, y) =
∑

F∈F

ψF (x, yNF
) (4.4)

Here, yNF
denotes the entries of y indexed by NF .

The benefit of using the factor graph representation is that it decomposes the

function over subsets of the variables of interest yi. This allows us to apply

efficient optimization procedures for the prediction problem in Equation 4.2 by

exploiting the graph structure of the factor graph. To obtain a linear function

from Equation 4.4 as in Equation 4.2, we can simply let each ψ be of the form

ψF (x, yNF
) = θTFΦF (x, yNF

). (4.5)

The most common form by far is

ψF (x, yNF
) = θTF,yNF

φF (x), (4.6)

where φF (x) is a vector representation of the input x, and there are different

parameter vectors θF,yNF
for each possible assignment of yNF

∈ YNF
. Both,

Equation 4.5 and Equation 4.6 are instantiations of the general linear form

Equation 4.2. To see this, for Equation 4.5 we simply concatenate the individual

components for all f ∈ F :

θ =
⊕

F∈F

θF (4.7)

Φ(x, y) =
⊕

F∈F

ΦF (x, yNF
). (4.8)

∗Traditionally factor graphs represent products of factors. To simplify presentation, we work
directly in the log-domain of the more standard product representation.

35

4 Learning Conditional Random Fields

Writing down Φ and θ for the form Equation 4.6 is a little less compact:

θ =
⊕

F∈F

⊕

yNF
∈YNF

θF,yNF
(4.9)

Φ(x, y) =
⊕

F∈F

(

φF (x)⊗ eyNF

)

, (4.10)

Here eyNF
∈ R

|YNF
| is the indicator for a given variable setting yNF

. In words,

ΦF is built simply by creating a vector of |YNF
| times the size of φF , which is

zero everywhere, except for the position corresponding to yNF
.

This approach to structured prediction is closely related to approaches using

probabilistic graphical models. Probabilistic graphical models are a tool to express

factorizations of probability distributions. Similar to Equation 4.4, the joint

probability distribution over a multi-variate random variable y can be expressed

using a factor-graph:

p(y|x) =
1

Zx

∏

F∈F

exp (ψF (x, yNF
)) . (4.11)

Here

Zx =
∑

y′∈Y

∏

F∈F

exp
(

ψ(x, y′NF
)
)

(4.12)

is the normalization constant of the conditional distribution over y. If f is chosen

as in Equation 4.6, then the resulting distribution belongs to the exponential

family, the class of probability distributions most commonly used in the graphical

model literature.

The most probable prediction y is given as argmax
y∈Y

p(y|x). As Z is independent

of y, and by the monotonicity of the logarithm, maximizing p(y|x) is equivalent

to maximizing g(x, y) over y in Equation 4.4. Therefore, from a prediction

standpoint, the two formulations are equivalent.

During learning, the presence of the factor Z in Equation 4.11 introduces

additional complications. As we only address the problem of making predictions,

not modeling probabilities, there are no clear benefits from the probabilistic

approach. Consequently, we work with the more direct structured prediction

approach of Equation 4.2 and Equation 4.4 instead.

36

4.2 Learning Max-Margin Structured Prediction

4.2 Learning Max-Margin Structured Prediction

Maximum margin learning has become one of the most popular methods to learn

classifiers and structural models in computer vision and text processing. There

are several reasons for the popularity of linear maximum margin approaches:

Loss-sensitivity In contrast to most probabilistic approaches, maximum mar-

gin learning approaches can directly minimize a user-specified loss.

Feasibility If the loss decomposes over the factor graph that specifies g, then

learning is feasible as soon as the maximization over y in Equation 4.2 can

be carried out.

Generalization The maximum margin principle yields generalization bounds

using the effective complexity [Taskar et al., 2003], that are generally tighter

than corresponding VC-theoretical bounds.

Strong Convexity The resulting optimization problem is strongly convex, lead-

ing to efficient optimization and unique solutions.

For learning, a dataset (x1, y1), . . . , (xk, yk) is given, together with a loss

∆: Y × Y → R. (4.13)

The parameters θ are learned by minimizing the loss-based soft-margin objective

min
θ

1

2
||θ||2 + C

∑

i

ℓ(xi, yi, θ) (4.14)

with regularization parameter C. Here, ℓ is a hinge-loss-like upper bound on the

empirical ∆-risk:

ℓ(xi, yi, θ) = [max
y∈Y

∆(yi, y) + θTΦ(xi, y)− θTΦ(xi, yi)]+. (4.15)

This is an instance of regularized empirical risk minimization, with a piecewise

linear, convex upper bound on the loss. Finding the y that corresponds to a

maximum in Equation 4.15 is a central part of all maximum-margin based learning

algorithms, and is referred to as loss-augmented prediction. For complex models,

such as the ones used for image segmentation, this optimization often dominates

37

4 Learning Conditional Random Fields

the learning process in terms of computational complexity. Therefore, it is often

desirable to find learning algorithms that converge with as little optimizations of

the loss-augmented prediction problem as possible.

There are several popular algorithms to solve Equation 4.14. We briefly re-

view three standard algorithms, and a very recent one: the 1-slack and n-slack

cutting plane algorithms, a stochastic primal subgradient algorithm, and recently

proposed stochastic dual coordinate descent method, which we now describe in

detail. We also give simplified known convergence rates in terms of calls to the

loss-augmented prediction.

Additionally, we discuss practical implications and implementation. One

particularly interesting aspect is the difference between sequential (or online) and

batch algorithms. Batch algorithms process the whole dataset before adjusting

parameters, while sequential algorithms process one sample at a time, and adjust

parameters incrementally. In image segmentation tasks, inference is often costly,

making loss-augmented prediction the most expensive step in learning. This

often leads to longer run-times for batch algorithms. On the other hand, loss-

augmented prediction in batch algorithms is embarrassingly parallel, allowing the

use of multiple processors with almost linear speed improvements.

4.2.1 Stochastic Subgradient Descent

Arguably the most straight-forward way to approach Equation 4.14 is using

subgradient descent. In light of the complexity of solving the loss-augmented

prediction problem in Equation 4.15, it is natural to work in a stochastic setting

(see Ratliff et al. [2007]). Given a model through Φ and a set of parameters θ, a

subgradient considering a single training example (xi, yi) can be computed simply

by solving the loss-augmented prediction problem:

d

dθ

[

1

2
||θ||2 + Cℓ(xi, yi, θ)

]

∋ C
[

Φ(xi, ŷ)− Φ(xi, yi)
]

+ θ (4.16)

with ŷ ∈ argmax
y∈Y

∆(yi, y) + θTΦ(xi, y)

The most commonly used update has the simple form

θt+1 = (1− ηt)θt − ηtC
[

Φ(xi, ŷ)− Φ(xi, yi)
]

(4.17)

38

4.2 Learning Max-Margin Structured Prediction

Here ηt is a sequence of step sizes. In practice the choice of ηt often strongly

influences the convergence behavior. Many practitioners adopt the sequence

proposed for binary SVMs in the Pegasos algorithm [Shalev-Shwartz et al., 2011]:

ηt =
C

t
, (4.18)

which has been found to work well in many settings. Shalev-Shwartz et al. [2011]

showed that this schedule achieves a convergence rate of O(lnT
T
). Lacoste-Julien

et al. [2013] and Shamir and Zhang [2012] recently showed independently that a

rate of O(1
T
) can be achieved using a novel averaging scheme:

θ̄T =
2

(T + 1)(T + 2)

T
∑

t=0

(t+ 1)θt. (4.19)

This t-weighted averaging can be computed on-the-fly as

θ̄t =
t

t+ 2
θ̄t +

2

t+ 2
θt+1. (4.20)

Implementation of the stochastic subgradient algorithm (with or without averag-

ing) is straight-forward, but unfortunately detecting convergence is often tricky.

It is possible to use mini-batches instead of processing one sample at a time to

make use of multiple processors for loss-augmented prediction. Unfortunately,

this negatively affects the number of iterations needed, and did not provide a

benefit in our experiments.

4.2.2 The n-Slack Cutting Plane Method

The n-slack cutting plane method [Tsochantaridis et al., 2006] reformulates Equa-

tion 4.14 into a quadratic objective with a combinatorial number of constraints:

min
θ,ξ1,...,ξk

1

2
||θ||2 + C

k
∑

i=1

ξi (4.21)

s.t. for i = 1, . . . , k ∀ŷ ∈ Y :

θT [Φ(xi, yi)− Φ(xi, ŷ)] ≥ ∆(yi, ŷ)− ξi

39

4 Learning Conditional Random Fields

Algorithm 2 n-Slack Cutting Plane Training of Structural SVMs

Input: training samples {(x1, y1), . . . , (xk, yk)}, regularization parameter C,

stopping tolerance ǫ.

Output: parameters θ, slack (ξ1, . . . , ξk)

1: Wi ← ∅, ξi ← 0 for i = 1, . . . , k

2: repeat

3: for i=1, . . . , k do

4: ŷ ← I(xi, yi, θ) := argmax
ŷ∈Y

∆(yi, ŷ)− θT [Φ(xi, yi)− Φ(xi, ŷ)]

5: if ∆(yi, ŷ)− θT [Φ(xi, yi)− Φ(xi, ŷ)] ≥ ξi + ǫ then

6: Wi ←Wi ∪ {ŷ}

7: (θ, ξ1, . . . , ξk)← argmin
θ,ξ1,...,ξk

||θ||

2

2

+ C

k
∑

i=1

ξi

s.t. for i = 1, . . . , k ∀ŷ ∈ Wi :

θT [Φ(xi, yi)− Φ(xi, ŷi)] ≥ ∆(yi, ŷi)− ξi

8: until noWi changes anymore.

As it is not feasible to deal with all constraints, only a working setW of active

constraints is maintained, using the cutting plane method. The algorithm starts

with an empty working set, and repeatedly iterates over the training data. For each

sample, the most violated constraint is added toW , and the quadratic program is

solved again, with the new set of constraints. The algorithm terminates when

no constraint can be found that is violated more than ǫ, which guarantees a

suboptimality of at most ǫ. Tsochantaridis et al. [2006] showed a convergence

rate ofO(1
T 2)with respect to calls to the QP solver. In the worst-case, only a single

new constraint could be found in one pass over the dataset, which leads to O(1
kT 2)

in terms of calls to loss-augmented prediction. The recent work of Lacoste-Julien

et al. [2013], however, suggests a rate of O(1
T
), which empirically seems more

plausible. This analysis does not include the cost of solving the QP, which

depends on the size of the dataset and the number of iterations. The complete

procedure is described in Algorithm 2.

40

4.2 Learning Max-Margin Structured Prediction

The n-slack cutting plane is a sequential algorithm that processes each sample

individually. While this allows fast process of the optimization with respect to

the number of calls to loss-augmented prediction, individual steps become more

and more costly. The number of the constraints is usually a multiple of the

number of training samples, which leads to very large QP problems, even for

medium sized datasets. This makes the algorithm often slow in practice. Solving

the quadratic program can be accelerated using several techniques. We found

that aggressively removing constraints that are inactive or contribute little to

the solution often makes the difference between the algorithm being practical or

not. Another possible technique is to update the quadratic program only every r

samples, for some small integer r (Joachims et al. [2009] suggest r = 100). While

this strategy on its own did not provide a large benefits in our experiments, it

allows for parallel loss-augmented prediction on these mini-batches of size r.

4.2.3 The 1-Slack Cutting Plane Method

The 1-slack cutting plane method [Joachims et al., 2009] solves the following

reformulation of Equation Equation 4.14:

min
θ,ξ

1

2
||θ||2 + Cξ (4.22)

s.t. ∀ŷ = (ŷ1, . . . , ŷn) ∈ Yn :

θT
n

∑

i=1

[Φ(xi, yi)− Φ(xi, ŷi)] ≥
n

∑

i=1

∆(yi, ŷi)− ξ

Informally, the 1-slack formulation corresponds to joining all training samples

into a single training example (x,y) that has no interactions between variables

corresponding to different data points, and then applying the n-slack algorithm

with a single data point. A detailed description can be found in Algorithm 3. By

construction, only a single constraint is added in each iteration of Algorithm 3,

leading to very small working setsW . This has the advantage of producing a QP

that easier to solve, as it contains far less variables than in the n-slack algorithm.

The down-side of this is that the loss-augmented prediction problem has to be

solved much more often until convergence. This is reflected in a convergence rate

of O(1
kT
), which scales with the inverse of the dataset size.

41

4 Learning Conditional Random Fields

Joachims et al. [2009], who introduced the method, proposed two enhance-

ments to make the algorithm more efficient:

Constraint Pruning As in the n-slack algorithm, members of the working set

W can become inactive during learning. If a constraint has been inactive for a

number of iterations, it is removed fromW , leading to smaller problem sizes.

Inference Caching In the 1-slack algorithm, each constraint is created using

a combination of loss-augmented prediction results. Therefore, each of these

predictions can be part of multiple constraints during learning. To exploit this,

we maintain a set C i of the last r results of loss-augmented prediction for each

training example (xi, yi) (line 5 in Algorithm 3). For generating a new constraint

(ŷ1, . . . , ŷn), we find

ŷi ← argmax
ŷ∈Ci

n
∑

i=1

∆(yi, ŷ)− θT
n

∑

i=1

[Φ(xi, yi)− Φ(xi, ŷ)] (4.23)

by enumeration of C i and continue until line 8. Only if ξ′ − ξ < ǫ, that is the

produced constraint is not violated strongly enough, we return to line 5 and

actually invoke the loss augmented prediction I .

4.2.4 The BCFW Algorithm

Very recently, Lacoste-Julien et al. [2013] derived a very performant new al-

gorithm. Starting from the Frank-Wolfe algorithm applied to the dual, they

derived a block-coordinate version (BCFW) where each block corresponds to

the constraints associated with a single training example. In this formulation,

closed-form line search is possible, yielding a simple-to-implement algorithm.

The algorithm processes a single training example at a time, and can be applied

while remaining completely in the primal domain, making it applicable to very

large datasets. Shalev-Shwartz and Zhang [2012] derived an alternative view of

the algorithm, viewing it as coordinate descent in the dual with an additional

proximal term. The BCFW algorithm has the same theoretical convergence rate

of O(1
T
) as averaged stochastic subgradient decent, but has two distinguishing

advantages:

42

4.2 Learning Max-Margin Structured Prediction

Algorithm 3 1-Slack Cutting Plane Training of Structural SVMs

Input: training samples {(xi, yi), . . . , (xi, yi)}, regularization parameter C, stop-
ping tolerance ǫ.

Output: parameters θ, slack ξ
1: W ← ∅
2: repeat
3:

(θ, ξ)← argmin
θ,ξ

||θ||

2

2

+ Cξ

s.t. ∀ŷ = (ŷ1, . . . , ŷk) ∈ W :

θT
k

∑

i=1

[Φ(xi, yi)− Φ(xi, ŷi)] ≥
k

∑

i=1

∆(yi, ŷi)− ξ

4: for i=1, . . . , k do

5: ŷi ← I(xi, yi, θ) := argmax
ŷ∈Y

k
∑

i=1

∆(yi, ŷ)−θT
k

∑

i=1

[Φ(xi, yi)−Φ(xi, ŷ)]

6: W ←W ∪ {(ŷi, . . . , ŷi)}

7: ξ′ ←
k

∑

i=1

∆(yi, ŷi)− θT
k

∑

i=1

[Φ(xi, yi)− Φ(xi, ŷi)]

8: until ξ′ − ξ < ǫ

Stopping Criterion Both views of BCFW give rise to a dual objective, which

can be used as a theoretically sound stopping criterion.

Learning Rate While there are several theoretical results on choosing the

step size in stochastic subgradient descent, choosing a concrete schedule is often

problematic in practice. By using analytic line-search, BCFW removes the need

for any step size parameter, making application of the algorithm much simpler.

The only disadvantage of BCFW compared to SSGD is the larger memory

requirement. While SSGD only needs to store a single copy of the parameters θ,

BCFW needs to store a separate (though possibly sparse) copy for each training

sample.

In practice, the BCFW algorithm is commonly used with the weighted aver-

aging described in Equation 4.20, as this is known to improve performance in

the closely related stochastic subgradient algorithms, and empirically improves

convergence. The detailed procedure as given by Lacoste-Julien et al. [2013] is

shown in Algorithm 4.

43

4 Learning Conditional Random Fields

Algorithm 4 BCFW

Input: training samples {(xi, yi), . . . , (xi, yi)}, regularization parameter C, stop-

ping tolerance ǫ.

Output: parameters θ

1: θ0, θ
i
0, θ̄0 ← 0, ℓ0, ℓ

i
0, t← 0

2: repeat

3: t← t+ 1

4: Pick i uniformly at random from {1, . . . , k}.

5: Perform loss-augmented prediction on sample i:

ŷ ← I(xi, yi, θ) := argmax
ŷ∈Y

∆(yi, ŷ)− θT [Φ(xi, yi)− Φ(xi, ŷ)]

6: Compute parameter and loss updates based on sample i:

θs ←
C
n
Φ(x, ŷ)

ℓs ←
C
n
∆(yi, ŷ)

7: Compute optimum step size η:

η ←
(θit−θs)T θt+C(ℓs−ℓi

k
)

‖θit−θs‖2
and clip to [0, 1]

8: Update per-sample parameters and loss estimate:

θit+1 ← (1− η)θit+1 + ηθs

ℓit+1 ← (1− η)θit+1 + ηℓs

9: Update global parameters and loss estimate:

θt+1 ← θt+1 + θit − θ
i
t+1

ℓt+1 ← ℓt+1 + ℓit − ℓ
i
t+1

10: Compute the weighted running average:

θ̄t+1 =
k

k+2
θ̄k +

2
k+2

θk+1

11: until (θ − θs)T θ − ℓ+ ℓs ≤ ǫ

where θs and ℓs are recomputed over the whole dataset.

44

4.3 Conditional Random Fields for Semantic Segmentation

4.3 Conditional Random Fields

for Semantic Segmentation

4.3.1 Fundamentals of Conditional Random Fields

Structured models based on factor graphs, as described in Section 4.1.1 are often

referred to as Conditional Random Fields (CRFs), pointing to their probabilistic

interpretation. CRFs have been established as an important tool in many areas

of computer vision. Applications include dense stereo, optical flow, inpainting,

denoising, image editing, low-level segmentation and semantic segmentation.

Most conditional random fields only apply unary and pairwise potential func-

tions. In this case, Equation 4.4 becomes

g(x, y) =
∑

v∈V

ψv(x, yv) +
∑

(v,w)∈E

ψv,w(x, yv, yw). (4.24)

Here V enumerates variables and E ⊂ V × V is a set of edges which represent

pairwise factors.

There are broadly two types of models that are used: models in which each

pixel in an image is represented as a variable, and models in which pixels are first

grouped together into superpixels and each superpixel is represented as a variable.

In pixel-based CRFs edges are usually introduced between adjacent pixels, that is

using either 4-neighborhoods or 8-neighborhoods. Superpixel-based approaches

introduce edges between adjacent superpixels, that is those that share a boundary.

Figure 4.1 shows a sample image together with extracted superpixels and the

neighborhood graph.

By nature, models over pixels and models over superpixels create graphs with

a large number of loops. This complicates prediction and learning, and is the

central topic of Chapter 6.

The motivation for using superpixels is that it is often easy to group nearby

pixels that belong to the same object just based on local color or texture cues.

While it is hard to even define what makes a sensible segmentation of an image,

it is much easier to define an over-segmentation. The only requirement for an

over-segmentation is that each segment only contains pixels belonging to the same

entity.

45

4 Learning Conditional Random Fields

Figure 4.1: Schematic of CRFs over superpixels. From left to right: input image, super-
pixel segmentation using SLIC into about 100 superpixels, pairwise potential
in the CRF, and desired labeling of superpixels.

Using superpixels instead of pixels has large computational advantages. A

model that uses superpixels contains much fewer variables than one that works

on pixel-level. Typical sizes for superpixels are in the hundreds of pixels, leading

to a hundred-fold decrease in the number of variables. There are also semantic

advantages. Using superpixels can constitute a form of regularization, including

prior knowledge about the structure of images. Modeling interactions between

superpixels also allows more distant parts of an image to interact, instead of

modeling long-term relations only indirectly over neighbors. Finally, modeling

decisions on a superpixel-level allows for more context for a local decision, while

semantic decisions on pixel-level are not meaningful near object boundaries.

The main disadvantage of superpixel-based approaches is that the initial over-

segmentation can not be influenced by later reasoning. This can be a problem if

fine structures need to be segmented for which local evidence does not suffice.

46

4.3 Conditional Random Fields for Semantic Segmentation

4.3.2 Data, Features and Superpixels

When evaluating learning algorithms in Chapter 5 and Chapter 6 we use the well-

established Pascal VOC 2010 and MSRC-21 datasets, shown in the introduction

in Figure 1.1. As we focus on the learning algorithms in these chapters, we use

features for unary potentials from the literature.

For both datasets we use the TextonBoost class probabilities provided by

Krähenbühl and Koltun [2012]. For the Pascal VOC dataset, the potentials

provided by Krähenbühl and Koltun [2012] also include the responses of object

detectors, to better capture the complex object classes. We average these potentials

inside superpixels and use the resulting feature as input to our unary potentials.

For the MSRC-21 dataset, we compute TextonBoost on two different scales, as

suggested by Mottaghi et al. [2013]. We additionally extract SIFT and color

descriptors and create bag-of-word descriptors for each superpixel. Following

the approach of Lucchi et al. [2011] we augment these with a global bag-of-word

descriptor for each image. We train a linear SVM using an approximation to

the additive χ2 kernel [Vedaldi and Zisserman, 2010] and use the response as an

additional input to our CRF. This piecewise training simplifies learning and was

found to have little effect on accuracy [Nowozin et al., 2010]. In total, there are

63 features for the MSRC-21 dataset, 21 for each scale of TextonBoost and an

additional 21 for the bag-of-word model using an SVM.

We use the SLIC [Achanta et al., 2012] algorithm to create superpixel for all our

experiments. It has been shown to provide competitive results with a minimum

of computational complexity. Algorithmically, SLIC simply computes a k-means

clustering over pixels. Each pixels is represented as 5D point, using three color

channels and the x and y coordinates in the image. In a post-processing step,

small segments are removed. To make clustering of so many points feasible, the

search for the nearest cluster in k-means is restricted to a local neighborhood in

the image. An example of superpixels computed with the SLIC algorithm can be

found in Figure 4.1. The features and superpixel algorithm used for the RGB-D

dataset NYU used in Chapter 7 will be discussed there.

47

4 Learning Conditional Random Fields

4.3.3 Previous Work

Conditional random fields were first used in the context of semantic segmentation

by He et al. [2004], who used contrastive divergence for learning parameters.

Many other early models, such as the one of Shotton et al. [2006], did not learn

parameters at all, but used contrast-sensitive Potts potential. These potentials have

a smoothing effect over labels by encouraging neighboring variables to take the

same value. The penalty for taking different values is dependent on color contrast

between the pixels.

This smoothing approach was improved upon by Kohli et al. [2009], who

introduces higher order potentials to enforce label consistency within larger

regions. Later, Ladicky et al. [2009] proposed a hierarchical model over pixels

and superpixels, including the higher order potentials of Kohli et al. [2009]

and additional lateral and hierarchical connections. A similar approach, using

superpixels as the finest resolution, and additionally modelling object class co-

occurrences was suggested by Gonfaus et al. [2010]. However, all these models

did not learn the potentials of the CRF model in a principled manner. The above

approaches all learned unary potentials using a non-structured approach, for

example SVMs or boosting, and then set pairwise and higher order potentials in

the model by hand.

Szummer et al. [2008] on the other hand used a structured support vector

machine approach to learn unary and pairwise parameters. They use the classical

graph cut approach of Boykov et al. [2001] for inference. However, graph-cut

inference is only applicable to submodular energies, and therefore severely re-

stricts the expressiveness of the resulting model. Lucchi et al. [2011] investigated

the importance of global constraints, using an approach similar to Szummer

et al. [2008], but also learning global interactions—however, these did not im-

prove performance, compared to simply including global descriptors into local

classifiers.

The problem of approximate inference was addressed elegantly by Yao et al.

[2012], who learn a joint model for scene classification, object localization and

semantic segmentation. Their work is based on Hazan and Urtasun [2010], who

integrate learning and inference in a joint optimization problem.

48

4.4 Casting Structured Prediction into Software

4.4 Casting Structured Prediction into Software

Unfortunately only few implementations for learning structured prediction are

publicly available—many applications are based on the non-free implementation

of Joachims et al. [2009]. In this section, we introduce our implementation,

PyStruct, which aims at providing a high-quality code with an easy-to-use inter-

face, in the high-level Python language. This allows practitioners to efficiently test

a range of models, as well as allowing researchers to compare to baseline methods

much more easily than this is possible with current implementations. PyStruct

is BSD-licensed, allowing modification and redistribution of the code, as well

as use in commercial applications. By embracing paradigms established in the

scientific Python community and reusing the interface of the widely-used scikit-

learn library [Pedregosa et al., 2011], PyStruct can be used in existing projects,

replacing standard classifiers. The online documentation and examples help new

users understand the somewhat abstract ideas behind structured prediction. We

base the experiments in the rest of this work on the algorithms implemented in

PyStruct. In the following, we briefly discuss implementation and features of

the PyStruct library.

4.4.1 Library Structure and Content

Using the formulation of structured prediction introduced in Section 4.1, learning

can be broken down into three sub-problems:

1. Encoding the structure of the problem in a joint feature function Φ.

2. Solving the loss-augmented prediction problem in Equation equation 4.15.

3. Optimizing the objective in Equation 4.14 with respect to θ.

The first two problems are usually tightly coupled, as the maximization in

Equation 4.2 is usually only feasible by exploiting the structure of Φ, as described

in Section 4.1.1. The last problem, finding θ, on the other hand, is usually treated

as independent. PyStruct takes an object-oriented approach to decouple the

task-dependent implementation of 2. and 3. from the general algorithms used to

solve 1.

Estimating θ is done in ❧❡❛r♥❡r classes, which currently support cutting plane

algorithms for structural support vector machines (SSVMs), the BCFW algorithm

for SSVMs, subgradient methods for SSVMs, the structured perceptron and latent

49

4 Learning Conditional Random Fields

Package 1-SP n-SP SSGD BCFW L-SSVM Perceptron ML

PyStruct X X X X X X ×
SVMstruct X X × × X × ×
Dlib X × × × × X ×
CRFsuite × × × × × X X

Table 4.1: Comparison of learning algorithms implemented in popular structured predic-
tion software packages. 1-CP stands for 1-slack Cutting Plane, n-CP for n-slack
Cutting plane, SSGD for stochastic subgradient decent learning of SSVMs,
BCFW is as described in section 4.2.4, L-SVM stands for latent variable SSVMs,
and ML for maximum likelihood learning.

Package Multi-Class Multi-Label Chain Graph LSVM LDCRF

PyStruct X X X X X X

SVMstruct X X × × × ×
Dlib X × X X × ×
CRFsuite × × X × × ×

Table 4.2: Comparison of models implemented in popular structured prediction software
packages. LSVM stands for the latent multi-class SVM, LDCRF for latent
dynamic conditional random fields.

variable SSVMs. See Section 4.2 for a detailed description of the algorithms. The

cutting plane implementation uses the cvxopt package [Dahl and Vandenberghe,

2006] for quadratic optimization.

Encoding the structure of the problem is done using ♠♦❞❡❧ classes, which

compute Φ and encode the structure of the problem. PyStruct implements

models for many common cases, such as multi-class and multi-label classification,

conditional random fields with constant or data-dependent pairwise potentials,

and several latent variable models. The maximization for finding y in Equa-

tion 4.2 is carried out using highly optimized implementations from external

libraries. PyStruct includes support for using OpenGM [Kappes et al., 2013],

LibDAI [Mooij, 2010], fusion moves [Rother et al., 2007, Lempitsky et al., 2010],

and AD3 [Martins et al., 2011]. It also includes an interface to a general purpose

linear programming solver from cvxopt [Dahl and Vandenberghe, 2006].

Table 4.1 and Table 4.2 list learning algorithms and models that are imple-

mented in PyStruct and compares them to other publicly available structured

prediction libraries.

50

4.4 Casting Structured Prediction into Software

4.4.2 Project Goals

Modularity PyStruct separates the algorithms for parameter estimation and

inference from the task-dependent formulation of Φ. This allows practitioners,

for example in computer vision or natural language processing, to improve their

model without changing any optimization code. On the other hand, researchers

working on better inference or parameter learning can easily benchmark their

improvements on a wide array of applications.

Completeness PyStruct aims at providing complete predictors that can be

used directly in applications. It contains model formulation for many typical

scenarios. This is in contrast to SVMstruct that provides no models at all, requiring

the user to develop significant amounts of code, even for simple tasks.

Efficiency While PyStruct focuses on usability, providing efficient and com-

petitive implementations is important to allow fast prototyping and scaling to

large datasets. PyStruct achieves the same runtime performance as the popular

SVMstruct model for cutting plane algorithms, and provides implementations of

the BCFW and Subgradient methods that scale to large datasets.

Documentation and Examples PyStruct provides full documentation of

all classes and functions. It also provides examples for many important applica-

tions, such as sequence tagging, multi-label classification and image segmentation.

Furthermore, standard benchmarks are included as examples, which allows easy

comparison with the literature.

Integration To improve usability, PyStruct is interoperable with other nu-

meric and scientific Python projects, such as scikit-learn [Pedregosa et al., 2011],

mahotas [Coelho, 2013], gensim [Řehůřek and Sojka, 2010], and scikit-image.

This allows users to build powerful applications with little effort. In particular,

most of the model-selection methods of scikit-learn can be used directly with

PyStruct.

Testing PyStruct contains a testing-suite with 80% line-coverage. It also

employs continuous integration to ensure stability and a seamless user experience.

51

4 Learning Conditional Random Fields

Listing 1 Example of defining and learning a CRF model.

1 ♠♦❞❡❧ ❂ ❝r❢s✳❊❞❣❡❋❡❛t✉r❡●r❛♣❤❈❘❋✭

2 ❝❧❛ss❴✇❡✐❣❤t❂✐♥✈❡rs❡❴❢r❡q✉❡♥❝②✱

3 s②♠♠❡tr✐❝❴❡❞❣❡❴❢❡❛t✉r❡s❂❬✵✱ ✶❪✱

4 ❛♥t✐s②♠♠❡tr✐❝❴❡❞❣❡❴❢❡❛t✉r❡s❂❬✷❪✱

5 ✐♥❢❡r❡♥❝❡❴♠❡t❤♦❞❂✬q♣❜♦✬✮

6

7 ss✈♠ ❂ ❧❡❛r♥❡rs✳◆❙❧❛❝❦❙❙❱▼✭♠♦❞❡❧✱ ❈❂✵✳✵✶✱ ♥❴❥♦❜s❂✲✶✮

8 ss✈♠✳❢✐t✭❳✱ ❨✮

4.4.3 Usage Example: Semantic Image Segmentation

We demonstrate the use of PyStruct on the task of semantic image segmentation,

the main focus of this work. The example shows how to learn an n-slack support

vector machine on a superpixel-based CRF on the Pascal VOC dataset. Details

of the experiment can be found in Section 4.3. Each sample (corresponding on

one entry of the list ❳) is represented as a tuple consisting of input features and a

graph representation.

The source code is shown in Listing 1. Lines 1–5 declare a model using

parametric edge potentials for arbitrary graphs. Here ❝❧❛ss❴✇❡✐❣❤t re-weights

the Hamming loss according to inverse class frequencies. The parametric pairwise

interactions have three features: a constant feature, color similarity, and relative

vertical position. The first two are declared to be symmetric with respect to the

direction of an edge, the last is antisymmetric. We use fusion moves for inference.

Line 5 creates a ❧❡❛r♥❡r object that will learn the parameters for the given model

using the n-slack cutting plane method, and line 6 performs the actual learning.

Using this simple setup, we achieve an accuracy (Jaccard index) of 30.3 on the

validation set following the protocol of Krähenbühl and Koltun [2012], who

report 30.2 using a more complex approach. Training the structured model takes

approximately 30 minutes using a single i7 core.

4.4.4 Experiments

While PyStruct focuses on usability and covers a wide range of applications, it

is also important that the implemented learning algorithms run in acceptable

time. In this section, we compare our implementation of the 1-slack cutting plane

52

4.4 Casting Structured Prediction into Software

0.0001 0.001 0.01 0.1 1.0
C

0

500

1000

1500

2000

2500

3000

3500 learning time (s) MNIST

SVM^struct
PyStruct

0.0001 0.001 0.01 0.1 1.0
C

0.88

0.89

0.90

0.91

0.92

0.93 accuracy MNIST

SVM^struct
PyStruct

Figure 4.2: Runtime comparison of PyStruct and SVMstruct for multi-class classification.

algorithm with the implementation in SVMstruct. We compare performance of

the Crammer-Singer multi-class SVM with respect to learning time and accuracy

on the MNIST dataset of handwritten digits. While multi-class classification is

not very interesting from a structured prediction point of view, this problem is

well-suited to benchmark the cutting plane solvers, as loss-augmented prediction

is trivial.

Results are shown in Figure 4.2. We report learning times and accuracy for

varying regularization parameter C. The MNIST dataset has 60 000 training

examples, 784 features and 10 classes.The setup of the experiment is the same as

in Chapter 5. The figure indicates that PyStruct has competitive performance,

while using a high-level interface in a dynamic programming language.

53

4 Learning Conditional Random Fields

4.5 Summary

In this chapter, we introduced basic concepts of structured prediction. In particu-

lar, we discussed Structured Support Vector Machines, a max-margin approach

for training linear predictors for structured data. We gave a description of several

popular learning algorithms, together with their theoretical runtime bounds

and practical considerations. We discussed the use of CRFs for object class

segmentation and semantic segmantion, and superpixel-based approaches.

We also introduced PyStruct, our modular structured learning and prediction

library in Python. PyStruct is geared towards ease of use, while providing effi-

cient implementations and is be the basis of our further experiments. PyStruct

integrates itself into the scientific Python ecosystem, making it easy to use with ex-

isting libraries and applications. Currently, PyStruct focuses on max-margin and

perceptron-based approaches. In the future, we plan to integrate other paradigms,

such as sampling-based learning [Wick et al., 2011], surrogate objectives (for

example pseudo-likelihood), and approaches that allow for a better integration of

inference and learning [Meshi et al., 2010].

54

5 Empirical Comparison of

Learning Algorithms

In this chapter, we provide an empirical evaluation of the learning algorithms

described in Chapter 4. We use the open source implementations in PyStruct,

and publish the evaluation code and datasets with the package.

5.1 Datasets and Models

We consider several qualitatively different datasets that have been widely used in

the literature. The problems we consider are multi-class classification, sequence

labeling, multi-label prediction, and general graph labeling.

5.1.1 Multi-Class Classification (MNIST)

The simplest task we use is multi-class classification. In this task, the inference

problem is trivial, as it is assumed the target set is small enough to be enumerated

efficiently. While this problem could be solved more efficiently with specialized

algorithms, it nevertheless provides an initial insight into structured prediction

algorithms. We choose the classical MNIST dataset of handwritten digits, con-

sisting of 60000 training images and 10000 test images of the digits zero to nine.

Figure 5.1 shows some examples. Each image is a 28×28 grey-level image, re-

sulting in a 784-dimensional feature vector. We normalize the features between

0 and 1. The model we use for multi-class classification is the Crammer-Singer

Figure 5.1: Visualization of samples from the ten classes in the MNIST dataset.

55

5 Empirical Comparison of Learning Algorithms

Figure 5.2: Visualization of some words from the OCR dataset. The first letters were
removed by Taskar et al. [2003] as they were capitals. The words are:
(j)ustifications, (s)kiing and (u)nexpected. The letters in parentheses are
not part of the dataset.

formulation. We do not include a bias, leading to 784 · 10 = 7840 parameters in

the model.

5.1.2 Sequence Labeling (OCR)

A classical application of structured prediction is sequence labeling. We choose

the “OCR” dataset introduced in the seminal work of Taskar et al. [2003]. Each

input consists of the segmented handwritten letters of a word in lower case. The

task is to classify all letters in a word, that is, assign each segmented input letter

to one of the classes “a” to “z”. As the first letter of each word was capitalized,

these were removed by Taskar et al. [2003], leading to somewhat odd-looking

labels. The words are between three and fourteen letters long, and each letter is

represented as a binary image of size 16, with a total of 6877 words. The dataset is

divided into ten folds. We consider two setups: learning on one fold, and testing

on the remaining nine folds, following Taskar et al. [2003], and learning on nine

folds and testing on the remaining fold, following Lacoste-Julien et al. [2013]. We

refer to the learning on one fold as OCR-small, and learning on nine folds as

OCR-big. We use a simple chain model with a single constant pairwise feature.

This means that the unary potential has 16 · 8 · 26 = 768 parameters, one for

56

5.1 Datasets and Models

each input feature and output class. The pairwise potential consists of a matrix

of transition potentials with 26 · 26 = 676 entries. It is well-known that efficient

exact inference in chains is possible using message passing algorithms.

5.1.3 Multi-Label Classification

Multi-label classification is a generalization of multi-class classification, in which

each example can be associated with more than one class. In other words, the

algorithm must decide for each sample and for each class whether the sample

belongs to that class or not. Multi-label classification was first formulated as

a structured prediction problem by Finley and Joachims [2008], who used to

investigate the influence of approximate inference on the n-slack cutting plane

algorithm. In their formulation each class is represented as a binary node in a

factor graph—the states representing presence or absence of the class. A different

factor of pairwise potentials is introduced between each pair of classes. We

also consider a different model, where pairwise potentials are only introduced

between specific nodes. We build a tree over the binary variables by computing

the Chow-Liu Tree [Chow and Liu, 1968] of the targets. While this results in a

less expressive model, a tree-shaped model allows for exact inference via message

passing. We use two of the datasets used in Finley and Joachims [2008], the scene

and yeast datasets. We choose these two as these are real-world datasets for which

the pairwise approach outlined above actually improves upon the baseline [Finley

and Joachims, 2008]. The scene dataset has six labels, 294 input features, 1211

training samples and 1196 test samples. This leads to 204 · 6 = 1224 parameters

for the unary potentials, 3 · 5 · 4 = 60 parameters for the full pairwise potentials

(four for each edge), and 5 · 4 = 20 parameters for the pairwise potentials of

the tree-shaped model. Using four parameters for each edge is a slight over-

parametrization that simplifies writing out the model. The yeast dataset has 14

labels, 103 features, 1500 training samples and 971 test samples. The resulting

numbers of parameters are 14 · 103 = 1442 parameters for the unary potentials,

7 · 13 · 4 = 364 parameters for the full pairwise potential, and 13 · 4 = 52

parameters for the tree-shaped model.

57

5 Empirical Comparison of Learning Algorithms

Figure 5.3: Visualization of the snakes dataset. The top row shows input patterns, the
bottom row the corresponding labels. The colors in the image showing the
labels correspond to dark blue for background, and encoding the length of
the snake from head (red) to tail (blue).

5.1.4 2D Grid CRF (Snakes)

The snakes dataset is a synthetic dataset where samples are labeled 2D grids.

It was introduced by Nowozin et al. [2011] to demonstrate the importance of

learning conditional pairwise potentials. The dataset consists of “snakes” of

length ten traversing the 2D grid. Each grid cell that was visited is marked as the

snake heading out towards the top, bottom, left, or right, while unvisited cells are

marked as background. The goal is to predict a labeling of the snake from “head”

to “tail”, that is, assigning numbers from zero to nine to the cells that are occupied

by the snake. Figure 5.3 illustrates the principle. Local evidence for the target

label is weak except around head and tail, making this a challenging task, requiring

strong pairwise potentials. The dataset is noise-free in the sense that given the

above description, a human could easily produce the desired labeling without

making any mistake. The dataset is also interesting as the model proposed by

Nowozin et al. [2011] produced notoriously hard-to-optimize energy functions.

Originally, the input is encoded into five RGB colors (“up”, “down”, “left”,

“right”, “background”). To encode the input more suitably for our linear methods,

we convert this representation to a one-hot encoding of the five states.

We use a grid CRF model for this task. Unary potentials for each node are

given by the input of the 8-neighborhood of the node—using a 4-neighborhood

would most likely yield better results, but we do not want to encode too much

task-knowledge into our model. Using the one-hot encoding of the input, this

58

5.1 Datasets and Models

leads to 9 · 5 = 45 unary features. With 11 output classes, the unary potential has

11 · 9 · 5 = 495 parameters. Features for the pairwise potentials are constructed

by concatenating the features of the two neighboring nodes, taking the direction

of the edge into account. The pairwise feature therefore has dimensionality 45 · 4,

with the first 45 entries corresponding to the feature of the “top” node, the second

45 entries to the features “bottom” node, followed by the “left” and “right” nodes.

As each edge is either horizontal or vertical, only two of these parts will be

non-zero for any given edge. With 45 · 4 edge features, the pairwise potentials

have 45 · 4 · 112 = 21780 parameters.

5.1.5 Superpixel CRFs for Semantic Segmentation

Our main attention is devoted to the use of conditional random fields for semantic

segmentation. We use the Pascal VOC and MSRC datasets. The Pascal VOC

dataset has 964 training images, each divided into around 100 superpixels. There

are 20 object categories, and an additional background class. The MSRC-21 dataset

has 276 training images, also segmented into around 100 superpixels each. There

are 21 semantic classes in the MSRC-21 dataset. Each superpixel is represented

as an output variable, with the ground truth obtained by majority vote over

the pixels belonging to the superpixel. We removed all superpixels in which the

majority of pixels is labeled “void”, leading to some samples having much fewer

than 100 variables. Pairwise potentials are introduced for each pair of neighboring

superpixels. We use the unary and pairwise potentials described in Section 4.3:

21 unary features for the Pascal VOC dataset and 63 unary features for the

MSRC-21 dataset. We use the same three pairwise features for both datasets: a

constant feature, a color feature and a feature encoding relative vertical position.

Overall, this results in 21 · 21 + 3 · 21 · 21 = 1764 parameters for the potentials

on Pascal VOC and 63 · 21 + 3 · 21 · 21 = 2646 parameters for the potentials on

the MSRC-21 dataset.

59

5 Empirical Comparison of Learning Algorithms

Dataset samples variables graph dim θ labels

MNIST 60000 1 none 7840 10
OCR-small 704 3–14 chain 1444 26
OCR-large 6173 3–14 chain 1444 26
scene-tree 1211 6 tree 1244 2
scene-full 1211 6 loopy 1284 2
yeast-tree 1500 14 tree 1494 2
yeast-full 1500 14 loopy 1806 2
snakes 200 84–168 loopy 22275 11
MSRC-21 276 7–113 loopy 1764 21
Pascal VOC 964 8–112 loopy 2646 21

Table 5.1: Summary of datasets used in the evaluation.

5.2 Experiments

We compare the following algorithms on the above models (see Section 4.2 for

details):

• Stochastic Subgradient Descent (SSGD) using the Pegasos schedule for

step-sizes

• The 1-slack cutting plane algorithm without inference caching

• The 1-slack cutting plane algorithm with caching the last 50 inference

results for each sample (see Chapter 6 for details)

• The n-slack cutting plane algorithm, where the QP is solved after each

sample

• The n-slack cutting plane algorithm, where the QP is solved every 100

samples

• The BCFW algorithm with weighted averaging

All algorithms take a C parameter, which we adjusted on a fully trained model

on a validation set (experiments not reported here) and held constant for all

models. We found, however, that the algorithms and models are quite robust to

the choice of C within one or two orders of magnitude. As stopping criterion, we

used a duality gap of 0.1 when possible, and a pre-defined number of iterations for

60

5.2 Experiments

the subgradient algorithms. It is worth noting that the quadratic programming

based algorithms have additional hyper-parameters that we do not discuss here

in detail, such as the threshold for removing a constraint as inactive, how often

inactive constraints are removed, and parameters of the underlying QP solver.

On the other hand, the BCFW algorithm has no hyper-parameters except for the

stopping criterion.

Our ultimate evaluation criterion is how fast the learning algorithms converge,

and how robust they are to approximate inference. To quantify our goals, we

track primal suboptimality and training set error during learning. We report

primal suboptimality as a function of runtime, and as a function of passes over

the training set. Both are informative to practitioners, as they give important

insight into the working of the algorithm. The actual runtime is arguably the

most relevant factor, but also highly influenced by implementation details and

properties of the dataset.

We are particularly interested in cases where inference is highly non-trivial,

making it the dominating factor with respect to runtime. We define one pass

over the dataset as calling prediction once for each sample. This way, we can get a

clear picture of how learning times scale with complexity of the inference task.

For the subgradient and BCFW algorithms, learning time is linear in the number

of passes over the dataset, while caching and solving of a QP makes the learning

time depend on the number of iterations in hard-to-predict ways. All algorithms

were run on a single core i7 processor.

5.2.1 Experiments using Exact Inference

In this section, we present results on multi-class classification, sequence labeling

and multi-label prediction. In these tasks, exact inference is possible, and we

can compute the exact objective of the various algorithms easily. We use the

dynamic programming algorithm implemented inOpenGM [Kappes et al., 2013]

for experiments using the tree and chain models. For the full pairwise multi-label

model, we use branch-and-bound together with the AD3 [Martins et al., 2011]

algorithm. We found that using the linear programming relaxation on the scene

dataset is often tight, and there was no need to resort to approximate inference.

Inference on the yeast dataset was more complex, and on the verge of being

non-practical. We use this dataset as an example for very costly inference.

61

5 Empirical Comparison of Learning Algorithms

BCFW SSGD 1-slack caching 1-slack n-slack 100 n-slack every

100 101 102 103 104

Passes through training data

10-2

10-1

100

101

102

103

104 Primal Suboptimality

100 101 102 103 104

Passes through training data

103

104

105 Training Error

Figure 5.4: Convergence of the primal suboptimality and training set loss on MNIST.

BCFW SSGD 1-slack caching 1-slack n-slack 100 n-slack every

100 101 102 103 104

Passes through training data

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

training time (min)

10-2

10-1

100

101

102

103

Figure 5.5: Convergence of the primal suboptimality on OCR-small.

We start our experiments with the MNIST dataset. The convergence of the

primal suboptimality and training set loss in terms of passes over the training set

is shown in Figure 5.4. While inference is trivial, this is by far the largest dataset,

making the n-slack algorithms not feasible. We see that the stochastic algorithms

are much faster than the cutting plane algorithm, in particular initially, even

in terms of iterations, with the BCFW clearly leading the way. Interestingly,

the 1-slack algorithm catches up near the desired suboptimality. Looking at the

training set loss in Figure 5.4 suggests that the high precision we demanded was

not necessary, and we could have terminated the stochastic algorithms much

earlier.

We now consider datasets with non-trivial inference. The results for OCR-

small are shown in Figure 5.5. Considering the plot against passes over the dataset

62

5.2 Experiments

on the left, several trends can be observed: the n-slack cutting plane algorithms

converge fastest, with the version that recomputes the QP at every step leading

the race. The algorithms are closely followed by the caching 1-slack cutting plane

algorithm. They are followed by the significantly slower BCFW algorithm, and

finally the non-caching 1-slack cutting plane algorithm and subgradient descent.

These results are intuitive, as they reflect “how much work” each algorithm does

for each loss-augmented prediction step. More work towards the objective leads

to faster convergence. This “more work” is quantified on the right hand side of

Figure 5.5, where the suboptimality is plotted against time. Clearly the n-slack

algorithms do “too much” work, leading to very slow convergence. Also, caching

does not speed up learning on this dataset.

We want to highlight an interesting phenomenon here: The cutting-plane

algorithms stop immediately when reaching the desired suboptimality of 0.1.

The BCFW algorithm, on the other hand, keeps on learning much longer—even

though the primal of the 1-slack algorithms is always above the primal of the

BCFW. This is caused by a looser bound given by the dual. Remember that the

stopping criterion for both cutting-plane and BCFW are given by the duality

gap. It seems that while the primal objective converges much faster in the BCFW

algorithm than in the non-caching 1-slack algorithm, the dual does not. This

means that in this practical experiment, the non-caching 1-slack algorithm was

faster in guaranteeing the desired suboptimality, and therefore in terminating.

Figure 5.6 illustrates this point by plotting primal and dual objectives for the

1-slack cutting plane and the BCFW algorithms. Taking a closer look, we find

that the same behavior occurred for MNIST, which is also shown in Figure 5.6.

The results for the OCR-large dataset are shown in Figure 5.7. It was not

feasible to run the n-slack algorithm when solving the QP at every step here.

The trends are the same as for the smaller dataset: n-slack and caching 1-slack

cutting plane are very fast in terms of passes through the dataset, but n-slack

cutting plane is impractical slow with respect to runtime. The BCFW algorithm

converges fast initially, but the 1-slack cutting plane is faster at high precision and

faster in certifying the desired duality gap.

Next, we consider the multi-label task. The results for the yeast and scene

datasets are shown in Figure 5.8. The caching 1-slack algorithm is much faster

than the non-caching one on both datasets and both graph structures. While the

two variants of the n-slack algorithm are equally fast with respect to passes over

63

5 Empirical Comparison of Learning Algorithms

BCFW SSGD 1-slack caching 1-slack n-slack 100 n-slack every

103

Passes through training data
100 101

training time (min)

Figure 5.6: Primal objective and dual objective (dashed lines) for BCFW and 1-slack
cutting plane on MNIST (left) and OCR-small (right).

BCFW SSGD 1-slack caching 1-slack n-slack 100 n-slack every

100 101 102 103 104

Passes through training data

10-2

10-1

100

101

102

103

104

10-2 10-1 100 101 102 103 104

training time (min)

10-2

10-1

100

101

102

103

104

Figure 5.7: Convergence of the primal suboptimality on OCR-large.

the training data, solving the QP every 100 steps is among the fastest algorithms,

while solving the QP at every step is among the slowest. We applied this method

only to the smaller scene dataset, as applying it on the yeast dataset was not

practical.

The caching 1-slack algorithm is the fastest algorithm to achieve the desired

primal suboptimality for tree-structured graphs, while it is out-performed by

the n-slack cutting plane algorithm for the full graphs. This is intuitive, as the

additional work the n-slack algorithm does becomes more valuable, the longer

the inference takes.

64

5.2 Experiments

BCFW SSGD 1-slack caching 1-slack n-slack 100 n-slack every

100 101 102 103 104

Passes through training data

10-3

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102

training time (min)

10-3

10-2

10-1

100

101

102

103

100 101 102 103

Passes through training data

10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103
104

10-2 10-1 100 101 102

training time (min)

10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103
104

100 101 102 103

Passes through training data

10-4
10-3
10-2
10-1
100
101
102
103
104

10-2 10-1 100 101 102

Training time (min)

10-4
10-3
10-2
10-1
100
101
102
103
104

100 101 102 103 104

Passes through training data

10-3

10-2

10-1

100

101

102

103

104

10-2 10-1 100 101 102 103 104

Training time (min)

10-3

10-2

10-1

100

101

102

103

104

Figure 5.8: Convergence of the primal suboptimality on the multi-label datasets. From
top to bottom: the scene dataset using a tree model, the scene dataset using a
full model, the yeast dataset using a tree model, and the yeast dataset using a
full model.

65

5 Empirical Comparison of Learning Algorithms

5.2.2 Experiments using Approximate Inference

For the remaining tasks, the snakes dataset and image segmentation, exact in-

ference is intractable for learning. We use two different approximate inference

algorithms, fusion moves [Lempitsky et al., 2010], a fast local search procedure,

and the linear programming relaxation provided by AD3 [Martins et al., 2011]

not using branch-and-bound, in contrast to the multi-label setup above.

Evaluation of algorithms where exact inference is not possible is much harder,

as it is usually not possible to evaluate the exact objective. When using AD3, we

can still consider the relaxed task, which will be solved exactly in the majority

of cases (AD3 can fail to find the primal solution to the LP relaxation). When

using fusion moves, there is no obvious interpretation of the approximate primal

objective, other than that it provides a lower bound of the actual objective.

Nevertheless, we find it informative to analyze the behavior of this lower bound.

In contrast to the previous section, we show primal and dual objective values

instead of the primal suboptimality when using approximate inference. The

dual values do provide lower bounds to the exact objective, and are therefore

somewhat more informative here, see Chapter 6 for a discussion.

For both inference algorithms, we also evaluate the predictive performance

on the training set. We explicitly do not consider the relaxed problem here—

instead we round possible fractional results. While the training error does not

directly reflect the objective, it provides a measure of how effective the “prediction

machine” given by the learned model together with the inference algorithm is.

Figure 5.9 shows the results on the snakes dataset. The top row shows the

objective when learning with fusion moves, the next row the training set loss.

First, we observe that using fusion moves, even the approximate objective does

not reach the desired optimality gap for the 1-slack and BCFW algorithms. This

is caused by the algorithms not finding any further constraints. The n-slack

algorithm fares a bit better and achieves a higher dual value. Looking at the

training set loss, it is clear that the stochastic algorithms have an advantage,

possibly caused by not stopping too early. Still, all algorithms ultimately fail to

solve the task.

66

5.2 Experiments

The situation is very different when using the linear programming relaxation.

Looking at the last two rows of Figure 5.9, we see that all algorithms are able

to solve the task perfectly. Evaluating on the test-set, all algorithms achieve

an accuracy of around 99.5%, confirming the models actually learned the task.

Surprisingly, SSGD was very successful on this dataset, even faster then the

non-caching n-slack algorithm. Caching provides nearly an order of magnitude

speed-up on the dataset. Using branch-and-bound to obtain exact results was not

feasible on this dataset.

The last set of experiments is on the segmentation dataset MSRC-21 and

Pascal VOC. Because of the large number of labels and samples, it is only

feasible to use the fusion move inference algorithm. The results are shown in

Figure 5.10, with the plots in the two upper rows showing results on MSRC-21,

and the tow rows below showing results on Pascal VOC. First, we notice that all

algorithms achieve low (approximate) duality gaps, and none of the algorithms

terminates prematurely. Also, all algorithms achieve similar dual objectives and

similar training errors after convergence. In both datasets, the 1-slack algorithm is

somewhat slow in minimizing the training set error, and the n-slack and stochastic

algorithms are much faster. Solving the QP only every 100 steps in the n-slack

algorithm significantly slows down learning on both datasets. This is in contrast

to the yeast datasets, where the converse was true, even though yeast has a

similar number of training examples to Pascal VOC.

Given the outcome described above, we suspect that learning was not affected

by approximate inference too much. We leave a more detailed analysis for

Chapter 6.

67

5 Empirical Comparison of Learning Algorithms

BCFW SSGD 1-slack caching 1-slack n-slack 100 n-slack every

100 101 102 103

Passes through training data

10-1

100

101

102

103 Objective

10-2 10-1 100 101 102 103

training time (min)

10-1

100

101

102

103 Objective

100 101 102 103

Passes through training data

10-1

100

101

102

103

104 Training Error

10-2 10-1 100 101 102 103

Training time (min)

10-1

100

101

102

103

104 Training Error

100 101 102 103

Passes through training data

10-1

100

101

102

103 Objective

10-2 10-1 100 101 102 103

training time (min)

10-1

100

101

102

103 Objective

100 101 102 103

Passes through training data

10-1

100

101

102

103

104 Training Error

10-2 10-1 100 101 102 103

Training time (min)

10-1

100

101

102

103

104 Training Error

Figure 5.9: Results on the snakes dataset. The first two rows show results using fusion
move inference, the two rows below using AD3. Dashed lines indicate the
dual objective.

68

5.2 Experiments

BCFW SSGD 1-slack caching 1-slack n-slack 100 n-slack every

100 101 102 103 104

Passes through training data

10-2

10-1

100

101

102

103 Objective

10-2 10-1 100 101 102 103

training time (min)

10-2

10-1

100

101

102

103 Objective

100 101 102 103 104

Passes through training data

101

102

103

104 Training Error

10-2 10-1 100 101 102 103

Training time (min)

101

102

103

104 Training Error

100 101 102 103 104

Passes through training data

100

101

102

103 Objective

10-1 100 101 102 103

training time (min)

100

101

102

103 Objective

100 101 102 103 104

Passes through training data

103

104

105 Training Error

10-1 100 101 102 103

Training time (min)

103

104

105 Training Error

Figure 5.10: Objective and traning set loss on the segmentation task. The first two rows
show results for the MSRC-21 dataset, the rows below for the Pascal VOC

dataset.

69

5 Empirical Comparison of Learning Algorithms

5.3 Summary

From the experiments above, it is clear there is currently no single best algorithm.

However, there are some clear trends:

• BCFW always converges faster than SSGD, with each iteration having the

same time complexity. This indicates that BCFW should be preferred over

SSGD, apart from settings with strong memory constraints.

• In nearly all experiments, caching significantly improved performance of

the 1-slack cutting plane algorithm.

• Initially BCFW and even SSGD converge faster than the 1-slack cutting

plane algorithm, while the 1-slack cutting plane algorithm was faster in

achieving high precision solutions and guaranteeing low duality gap.

• The n-slack cutting plane algorithm was often fastest to converge in terms

of passes over the training set, but slow in terms of runtime. For prob-

lems with very slow inference, the n-slack algorithm might be a better

choice than the others—if the interval between re-solving the QP is chosen

appropriately.

There are however some caveats to our analysis, in particular with respect to the

cutting plane solvers. The performance of the cutting plane algorithms depends

not only on the performance of the QP solver used (in our case quadratic cone

programming), but also on heuristics for pruning variables from the QP, caching

constraints (for the 1-slack algorithm) and deciding how often to solve the QP

(for the n-slack algorithm). Better heuristics could have a beneficial effect on these

algorithms. On the other hand, it is remarkable how competitive the BCFW

algorithm is, without the need for any such implementation tricks. This makes

the BCFW algorithm very attractive for the practitioner who does not want to

spend much time tuning the implementation.

We do not present results for SSGD with averaging [Lacoste-Julien et al.,

2012] here, but found it to produce results similar to plain SSGD in tentative

experiments. In particular, it never outperformed BCFW.

With respect to approximate learning, we found that the inference algorithm

has a stronger impact on the performance than the learning algorithm. While the

70

5.3 Summary

SSGD and BCFW algorithms have somewhat lower training error on the snakes

dataset than the cutting-plane algorithm when using fusion-move inference, they,

too, fail at solving the task. Using the linear programming relaxation, on the

other hand, all algorithms are able to solve the task nearly perfectly. For the

segmentation datasets, it is harder to judge the outcome, though there seems to

be little difference between the learning algorithms in terms of the final result. In

the next chapter, we will demonstrate how we can learn exactly, even with the

complex models used for semantic segmentation.

71

6 Learning Loopy CRF Exactly

6.1 Introduction

As discussed in section 4.3, many computer vision algorithms employ conditional

random field models on pixel or superpixel graphs. These graphs, by nature,

contain loops, making exact prediction and loss-augmented prediction in general

intractable. As loss-augmented prediction is a central step in the learning algo-

rithms discussed in Chapter 4, approximate inference leads to complications in

learning.

In this chapter, we investigate the necessity and consequences of these approxi-

mations in the 1-slack cutting-plane learning algorithm in the context of semantic

image segmentation. We show that despite inference being deemed intractable

in loopy superpixel models, we are able to learn a pairwise conditional ran-

dom field model using a structured support vector machine exactly for this task.

We evaluate our approach on the popular MSRC-21 and Pascal VOC datasets.

Our approach improves upon the state-of-the-art on the MSRC-21 dataset, and

is competitive with comparable approaches on the Pascal VOC dataset. The

contribution of this chapter are:

• We analyze the simultaneous use of multiple approximate inference meth-

ods for learning SSVMs using the cutting plane method, relating approxi-

mate learning to the exact optimum.

• We introduce an efficient caching scheme to accelerate cutting plane train-

ing.

• We demonstrate that using a combination of under-generating and exact

inference methods, we can learn an SSVM exactly in a practical application,

even in the presence of loopy graphs.

• We show that even using a strong approximate inference procedure can

improve upon the state-of-the-art on the MSRC-21 dataset.

73

6 Learning Loopy CRF Exactly

While empirically exact learning yields results comparable to those using

approximate inference alone, certification of optimality allows treating learning

as a black-box, enabling the researcher to focus attention on designing the model

for the application at hand. It also makes research more reproducible, as the

particular optimization methods that are used become less relevant to the result.

6.2 Related Work

Recently, there has been an increase in research in learning structured prediction

models where standard exact inference techniques are not applicable, in particular

in the computer vision community. The influence of approximate inference

on structural support vector machine learning was first analyzed by Finley and

Joachims [2008]. Finley and Joachims [2008] showed convergence results for

under-generating and over-generating inference procedures, meaning methods

that find suboptimal, but feasible solutions, and optimal solutions from a larger

(infeasible) set, respectively. Finley and Joachims [2008] demonstrated that over-

generating approaches—in particular linear programming (LP)—perform best

on the considered model. They also show that learning parameters with the LP

relaxation minimizes a bound on the empirical risk when extending the target

domain to the relaxed solutions. We argue that extending the target domain in this

way is unnatural for many applications, and aim at optimizing the non-relaxed

objective directly, minimizing the original empirical risk. This is an important

difference, as relaxed solutions are usually not acceptable in practice.

As using LP relaxations was considered too costly for typical computer vision

approaches, later work employed graph-cuts [Szummer et al., 2008] or Loopy

Belief Propagation (LBP) [Lucchi et al., 2011]. These works use a single inference

algorithm for the whole learning process, and can not provide any bounds on

the true objective or the empirical risk. In contrast, in this chapter we show how

to combine different inference methods that are more appropriate for different

stages of learning.

Recently, Meshi et al. [2010], Hazan and Urtasun [2010] and Komodakis

[2011] introduced formulations for joint inference and learning using duality. In

particular, Hazan and Urtasun [2010] demonstrated the performance of their

model on an image denoising task, where it is possible to learn a large number of

74

6.3 Learning SSVMs with Approximate Inference

parameters efficiently. While these approaches show great promise, in particular

for pixel-level or large-scale problems, they perform approximate inference and

learning, and do not relate their results back to the original SSVM objective they

approximate. It is unclear how they compare to standard structured prediction

approaches in real-world applications.

6.3 Learning SSVMs with Approximate

Inference

In this chapter, we use the 1-slack cutting plane algorithm, as we found this

algorithm to be most suitable for out approach. Recall the optimization problem

that is solved by the 1-slack cutting plane algorithm:

min
θ,ξ

1

2
||θ||2 + Cξ (6.1)

s.t. ∀ŷ = (ŷ1, . . . , ŷn) ∈ Yn :

θT
n

∑

i=1

[Φ(xi, yi)− Φ(xi, ŷi)] ≥
n

∑

i=1

∆(yi, ŷi)− ξ

For reference, the algorithm described in Section 4.2.3, Algorithm 3 is repro-

duced as Algorithm 5, with the additional input of an inference algorithm Î ,

which is called in line 5. We investigate algorithms Î (often called separation

oracles in the context) that do not yield the exact maximum here. There are

two groups of inference procedures, as identified by Finley and Joachims [2008]:

under-generating and over-generating approaches. An under-generating approach

satisfies Î(xi, yi, θ) ∈ Y , but does not guarantee maximality in line 5 of Al-

gorithm 5. An over-generating approach on the other hand, does solve the

loss-augmented prediction in line 5 exactly, but for a larger set Ŷ ⊃ Y , meaning

that possibly Î(xi, yi, θ) /∈ Y .

6.3.1 Bounding the Objective

Even using approximate inference procedures, several statements about the origi-

nal exact objective (Equation 6.1) can be obtained.

75

6 Learning Loopy CRF Exactly

Algorithm 5 1-Slack Cutting Plane Training of Structural SVMs

Input: training samples {(xi, yi), . . . , (xi, yi)}, regularization parameter C, stop-
ping tolerance ǫ, inference oracle Î .

Output: parameters θ, slack ξ
1: W ← ∅
2: repeat
3:

(θ, ξ)← argmin
θ,ξ

||θ||

2

2

+ Cξ

s.t. ∀ŷ = (ŷ1, . . . , ŷk) ∈ W :

θT
k

∑

i=1

[Φ(xi, yi)− Φ(xi, ŷi)] ≥
k

∑

i=1

∆(yi, ŷi)− ξ

4: for i=1, . . . , k do

5: ŷi ← Î(xi, yi, θ) ≈ argmax
ŷ∈Y

k
∑

i=1

∆(yi, ŷ)−θT
k

∑

i=1

[Φ(xi, yi)−Φ(xi, ŷ)]

6: W ←W ∪ {(ŷi, . . . , ŷi)}

7: ξ′ ←
k

∑

i=1

∆(yi, ŷi)− θT
k

∑

i=1

[Φ(xi, yi)− Φ(xi, ŷi)]

8: until ξ′ − ξ < ǫ

Let oW(θ) denote the objective in Equation 6.1 with given parameters θ re-

stricted to a working setW , as computed in line 3 of Algorithm 5 and let

oÎ(θ) = Cξ′ +
||θ||

2

2

when using inference algorithm Î , that is oÎ(θ) is the approximation of the primal

objective given by Î . To simplify exposition, we drop the dependency on θ.

Depending on the properties of the inference procedure Î used, it is easy to see:

1. If all constraints ŷ inW are feasible, that is generated by an under-generating

or exact inference mechanism, then oW is an lower bound on the true

optimum o(θ∗).

2. If Î is an over-generating or exact algorithm, oÎ is an upper bound on o(θ∗).

We can also use these observations to judge the suboptimality of a given

parameter θ, that is see how far the current objective is from the true optimum.

76

6.4 Efficient Exact Cutting Plane Training of SSVMs

Learning with any under-generating approach, we can use 1. to maintain a lower

bound on the objective. At any point during learning, in particular if no more

constraints can be found, we can then use 2., to also find an upper bound. This

way, we can empirically bound the estimation error, using only approximate

inference. We now describe how we can further use 1. to both speed up and

improve learning.

6.4 Efficient Exact

Cutting Plane Training of SSVMs

6.4.1 Combining Inference Procedures

The cutting plane method described in Section 4.2.3 relies only on some separa-

tion oracle Î that produces violated constraints when performing loss-augmented

prediction.

Using any under-generating oracle Î , learning can proceed as long as a con-

straint is found that is violated by more than the stopping tolerance ǫ. Which

constraint is used next has an impact on the speed of convergence, but not on

correctness. Therefore, as long as an under-generating method does generate

constraints, optimization makes progress on the objective.

Instead of choosing a single oracle, we propose to use a succession of algorithms,

moving from fast methods to more exact methods as training proceeds. This

strategy not only accelerates training, it even makes it possible to train with exact

inference methods, which is infeasible otherwise.

In particular, we employ three strategies for producing constraints, moving

from one to the next if no more constraints can be found:

1. Produce a constraint using previous, cached inference results.

2. Use a fast under-generating algorithm.

3. Use a strong but slow algorithm that can certify optimality.

While using more different oracles is certainly possible, we found that using just

these three methods performed very well in practice. This combination allows us

to make fast progress initially and guarantee optimality in the end. Our strategy

is visualized in Figure 6.1. Notably, it is not necessary for an algorithm used as

77

6 Learning Loopy CRF Exactly

Fusion

moves

AD3 branch

& bound

caching

No more

constraints

caching

Figure 6.1: Illustration of the choice of inference algorithm. During the beginning of
learning, fusion move inference together with caching is used. If no more
constraint can be found, the fusion move algorithm is replaced by AD3 with
branch and bound.

the third strategy to always produce exact results. For guaranteeing optimality of

the model, it is sufficient that we obtain a certificate of optimality when learning

stops.

6.4.2 Dynamic Constraint Selection

Combining inference algorithm as described in Section 6.4.1 accelerates calls to

the separation oracle by using faster, less accurate methods. On the down-side,

this can lead to the inclusion of many constraints that make little progress in

the overall optimization, resulting in much more iterations of the cutting plane

algorithm. We found this particularly problematic with constraints produced by

the cached oracle.

We can overcome this problem by defining a more elaborate schedule to switch

between oracles, instead of switching only if no violated constraint can be found

any more. Our proposed schedule is based on the intuition that we only trust a

separation oracle as long as the current primal objective did not move far from

the primal objective as computed with the stronger inference procedure.

In the following, we use the notation of Section 6.3.1 and indicate the choices

of oracle Î with Q for a chosen inference algorithm and C for using cached

constraints.

To determine whether to produce inference results from the cache or to run

the inference algorithm, we solve the QP once with a constraint from the cache.

If the resulting oC verifies

oC − oQ <
1

2
(oQ − oW) (6.2)

we continue using the caching oracle. Otherwise we run the inference algorithm

78

6.5 Experiments

Average Global

Unary terms only 77.7 83.2
Pairwise model (move making) 79.6 84.6
Pairwise model (exact) 79.0 84.3

Ladicky et al. [2009] 75.8 85.0
Gonfaus et al. [2010] 77 75
Lucchi et al. [2013] 78.9 83.7

Table 6.1: Accuracies on the MSRC-21 Dataset. We compare a baseline model, our exact
and approximately learned models and state-of-the-art approaches.

again. For testing Equation 6.2, the last known value of oQ is used, as recomputing

it would defy the purpose of the cache. It is easy to see that our heuristic runs

inference only O(log(oQ − oW)) times more often than the strategy of Joachims

et al. [2009] in the worst case.

6.5 Experiments

6.5.1 Inference Algorithms

As a fast under-generating inference algorithm, we used fusion moves [Rother

et al., 2007, Lempitsky et al., 2010]. Fusion moves are a local search procedure,

using moves that are generated using an auxiliar binary problem, which is solved

using QPBO [Rother et al., 2007].

For inference with optimality certificate, we use the recently developed Alter-

nating Direction Dual Decomposition (AD3) method of Martins et al. [2011].

AD3 produces a solution to the linear programming relaxation, which we use as

the basis for branch-and-bound.

6.5.2 Semantic Image Segmentation

Our main application is of course semantic segmentation and object class seg-

mentation. We evaluate the proposed learning approach on Pascal VOC 2013

and MSRC-21, with model and features discussed in Section 4.3. We use the

same model and pairwise features for the two datasets. Each image is represented

79

6 Learning Loopy CRF Exactly

as a neighborhood graph of approximately 100 superpixels, extracted using the

SLIC [Achanta et al., 2012] algorithm. Pairwise potentials are founded on two

image-based features: color contrast between superpixels, and relative location

(coded as angle), in addition to a bias term.

We set the stopping criterion ǫ = 10−4, though using only the under-generating

method, training always stopped prematurely as no violated constraints could be

found any more.

6.5.3 Caching

First, we compare our caching scheme, as described in Section 6.4.1, with the

scheme of Joachims et al. [2009], which produces constrains from the cache

as long as possible, and with not using caching of constraints at all. For this

experiment, we only use the under-generating move-making inference on the

MSRC-21 dataset. Times until convergence are 397s for our heuristic, 1453s for

the heuristic of Joachims et al. [2009], and 2661s for using no cache, with all

strategies reaching essentially the same objective.

Figure 6.2 shows a visual comparison that highlights the differences between

the methods. Note that neither oQ nor oC provide valid upper bounds on the

objective, which is particularly visible for oC using the method of Joachims et al.

[2009]. Using no cache leads to a relatively smooth, but slow convergence, as

inference is run often. Using the method of Joachims et al. [2009], each run

of the separation oracle is followed by quick progress of the dual objective oW ,

which flattens out quickly. Much time is then spent adding constraints that do

not improve the dual solution. Our heuristic instead probes the cache, and only

proceeds using cached constraints if the resulting oC is not too far from oQ.

MSRC-21 Dataset

For the MSRC-21 Dataset, we use unary potentials based on bag-of-words of SIFT

features and color features and TextonBoost as described in Section 4.3.2. We used

TextonBoost only on one scale for thi experiment, leading to 42 = 2 · 21 unary

features for each node. The resulting model has around 100 output variables per

image, each taking one of 21 labels. The model is trained on 335 images from the

standard training and validation split.

80

6.5 Experiments

Figure 6.2: Training time comparison using different caching heuristics. Large dots
correspond to o

Q, small dots correspond to o
C , and the line shows oW . See

the text for details.

Jaccard

Unary terms only 27.5
Pairwise model (move making) 30.2
Pairwise model (exact) 30.4

Dann et al. [2012] 27.4
Krähenbühl and Koltun [2012] 30.2
Krähenbühl and Koltun [2013] 30.8

Table 6.2: Accuracies on the Pascal VOC Dataset. We compare our approach against
approaches using the same unary potentials.

81

6 Learning Loopy CRF Exactly

Move-making Exact

Dual Objective oW 65.10 67.66
Estimated Objective oÎ 67.62 67.66
True Primal Objective oE 69.92 67.66

Table 6.3: Objective function values on the MSRC-21 Dataset

Pascal VOC 2010

For the Pascal VOC 2010 dataset, we follow the procedure of Krähenbühl and

Koltun [2012] in using the official “validation” set as our evaluation set, and

splitting the training set again. We use the unary potentials provided by the same

work, and compare only against methods using the same setup and potentials,

Krähenbühl and Koltun [2013] and Dann et al. [2012]. Note that state-of-the-art

approaches, some not build on the CRF framework, obtain a Jaccard Index (also

call VOC score) around 40% , notably Xia et al. [2012], who evaluate on the

Pascal VOC 2010 “test” set.

Results

We compare classification results using different inference schemes with results

from the literature. As a sanity check, we also provide results without pairwise

interactions.

Results on the MSRC-21 dataset are shown in Table 6.1. We find that our model

is improves upon state-of-the-art approaches. In particular, our results improve

upon to those of Lucchi et al. [2013], who use a stochastic subgradient method

with working sets. Their best model takes 583s for training, while training our

model exactly takes 1814s. We find it remarkable that it is possible to guarantee

optimality in time of the same order of magnitude that a stochastic subgradient

procedure with approximate inference takes. Using exact learning and inference

does not increase accuracy on this dataset. Learning the structured prediction

model using move-making inference alone takes 4 minutes, while guaranteeing

optimality up to ǫ = 10−4 takes only 18 minutes.

Results on the Pascal VOC dataset are shown in Table 6.2. We compare against

several approaches using the same unary potentials. For completeness, we also

82

6.5 Experiments

Move-making Exact

Dual Objective oW 92.06 92.24
Estimated Objective oÎ 92.07 92.24
True Primal Objective oE 92.35 92.24

Table 6.4: Objective function values on the Pascal VOC Dataset.

list state-of-the-art approaches not based on CRF models. Notably, out model

matches or exceeds the performance of the much more involved approaches of

Krähenbühl and Koltun [2012] and Dann et al. [2012] which use the same unary

potentials. Using exact learning and inference slightly increased performance on

this dataset. Learning took 25 minutes using move-making alone and 100 minutes

to guarantee optimality up to ǫ = 10−4. A visual comparison of selected cases is

shown in Figure 6.3.

The objective function values using only the under-generating move-making

and the exact inference are detailed in Table 6.3 and Table 6.4. We see that

a significant gap between the cutting plane objective and the primal objective

remains when using only under-generating inference. Additionally, the estimated

primal objective oÎ using under-generating inference is too optimistic, as can be

expected. This underlines the fact that under-generating approaches can not be

used to upper-bound the primal objective or compute meaningful duality gaps.

6.5.4 Implementation Details

We implemented the described procedure in PyStruct. We used the SLIC im-

plementation provided by Achanta et al. [2012] to extract superpixels and the

SIFT implementation in the vlfeat package [Vedaldi and Fulkerson, 2008]. For

clustering visual words, piecewise training of unary potentials and the approx-

imation to the χ2-kernel, we made use of the scikit-learn machine learning

package [Pedregosa et al., 2011]. The we implement fusion moves with the help

of the QPBO-I method provided by Rother et al. [2007]. We use the excellent

implementation of AD3 provided by Martins et al. [2011].

Thanks to using these high-quality implementations, running the whole

pipeline for the pairwise model takes less than an hour on a 12 core CPU.

Solving the QP is done in a single thread, while inference is parallelized over all

cores.

83

6 Learning Loopy CRF Exactly

Figure 6.3: Visual comparison of the result of exact and approximate learning on selected
images from the test set. From left to right: the input image, prediction using
approximate learning, prediction using exact learning, and ground truth.

6.6 Summary

In this chapter we demonstrated that it is possible to learn state-of-the-art con-

ditional random field models exactly using structural support vector machines,

despite the model containing many loops. The key to efficient learning is the

combination of different inference mechanisms and a novel caching scheme for

the 1-slack cutting plane method, in combination with state-of-the-art inference

methods.

We show that guaranteeing exact results is feasible in a practical setting, and

hope that this result provides a new perspective onto learning loopy models for

computer vision applications. Even though exact learning does not necessarily

lead to a large improvement in accuracy, it frees the practitioner from worrying

about optimization and approximation issues, leaving more room for improving

the model, instead of the optimization. We do not expect learning of pixel-level

models, which typically have tens or hundreds of thousands of variables, to be

efficient using exact inference. However we believe our results will carry over

to other super-pixel based approaches. Using other over-generating techniques,

such as duality-based message passing algorithms, it might be possible to obtain

meaningful bounds on the true objective, even in the pixel-level domain.

84

7 Learning Depth-Sensitive

Conditional Random Fields

For robots to perform varied tasks in unstructured environments, understanding

their surroundings is essential. In this chapter, we look at the semantic annotation

of maps as a dense labeling of RGB-D images into semantic classes. We formulate

the problem as learning a CRF over a superpixel segmentation of the RGB-D

image, producing a labeling that takes 3D layout into account. Dense labeling of

objects and structure classes allows for a detailed reasoning about the scene.

We thereby extend the success of learned CRF models for semantic segmen-

tation in RGB images as considered in Chapter 6 to the domain of 3D scenes.

Our emphasis lies on exploiting the additional depth and 3D information in all

processing steps, while relying on learning to create a model that is adjusted to

the properties of the sensor input and environment.

Our approach starts with a random forest, providing a noisy local estimate

of semantic classes based on color and depth information. These estimates are

grouped together using a superpixel approach, for which we extend previous

superpixel algorithms from the RGB to the RGB-D domain. We then build a

geometric model of the scene, based on the neighborhood graph of superpixels.

We use this graph not only to capture spatial relations in the 2D plane of the

image, but also to model object distances and surface angles in 3D, using a point

cloud generated from the RGB-D image. The process is depicted in Figure 7.1.

We assess the accuracy of our model on the challenging NYU Segmentation

dataset V2 [Silberman et al., 2012], where our model outperforms previous

approaches. Our analysis shows that while our random forest model already has

competitive performance, the superpixel-based grouping and in particular the

loss-based learning are integral ingredients of the success of our method.

85

7 Learning Depth-Sensitive Conditional Random Fields

Figure 7.1: Overview of the proposed semantic segmentation method.

7.1 Related Work

The task of dense semantic annotation of 3Dmaps has seen an increased interest in

recent years. Early work includes Nüchter and Hertzberg [2008], who combined

6D SLAM, surface annotation, and object recognition to build semantically

annotated maps. They demonstrate their approach on a mobile robot in an

indoor environment. More recently Sengupta et al. [2012] introduced a dataset

of semantically annotated street-scenes on a closed track, captured as pairs of

stereo images. They approach the task by jointly reasoning about 3D layout and

semantics of the scenes and produce a dense labeling on image level. Sengupta

et al. [2013] extended the approach to produce a volumetric reconstruction of the

scene, together with a dense semantic labeling of the volumetric representation.

Their approach to image segmentation builds on the hierarchical CRF approach

of Ladicky et al. [2009], which is similar in spirit to our approach, but used Potts

potentials together with cross-validation to adjust parameters.

Recent approaches for indoor semantic annotation of maps mostly focused

on RGB-D images, which are now easy to obtain using structured light sensors.

Stückler et al. [2012], for example, used a Random Forest model to obtain a dense

semantic labeling of images and integrated predictions over multiple views in 3D.

86

7.1 Related Work

They evaluated their approach on table-top and simple indoors scenes. Silberman

and Fergus [2011] introduced the NYU Depth Dataset V1 indoor dataset, which

consisted of a large variety of densely annotated indoor scenes, captured as RGB-D

images. Their work also introduced a baseline method for semantic segmentation

of RGB-D image, which is based on a CRF over superpixels, with unary potentials

given by interest point descriptors. While pairwise potentials for the CRF were

carefully designed for the dataset, potentials were either directly set by hand

or estimated using empirical frequencies. This is in contrast to our approach

which applies structured prediction techniques to learn potentials automatically

to optimize predictive performance. Ren et al. [2012] evaluated the design of

features for semantic labeling of RGB-D data, and use a hierarchical segmentation

to provide context. While they also define a CRF on superpixels, their model

is again not learned, but a weighted Potts model, using only a probability of

boundary map, and not taking spatial layout into account at all. Silberman et al.

[2012] extended the NYU Depth Dataset V1 to the NYU Depth Dataset V2 that

we are also using here. Their focus is on inferring support relations in indoor

scenes, such as objects resting on tables or shelfs, which in turn rest on the floor.

Their approach is based on robust estimation of 3D plane hypotheses, which are

then jointly optimized with support relations and structure classes. Silberman

et al. [2012] used a complex pipeline, employing significant domain knowledge.

In our approach, on the other hand, we try to learn all relevant domain specific

features directly from the data, which allows us to out-perform the work of

Silberman et al. [2012] with respect to structure class segmentation.

Couprie et al. [2013] approached the task of semantic segmentation of structure

classes in RGB-D using the paradigm of convolutional neural networks, extending

previous work of Farabet et al. [2013] and Schulz and Behnke [2012]. Similar

to our approach, Couprie et al. [2013] combined the output of a pixel-based,

low-level learning algorithm with an independent unsupervised segmentation

step. In contrast to their work, we improve our results by not only averaging

predictions within superpixels, but also explicitly learning interactions between

neighboring superpixels, favoring a consistent interpretation of the whole image.

Stückler et al. [2013] extended the approach of Stückler et al. [2012] to a

real-time system for online learning and prediction of semantic classes. Their

method use a GPU implementation of random forests, and integrate 3D scene

information in an online fashion. They evaluated their approach on the dataset

87

7 Learning Depth-Sensitive Conditional Random Fields

of Silberman et al. [2012] with promising results. We use the implementation

of random forests provided by Stückler et al. [2013], but instead of integrating

predictions over time, we focus on exploiting the structure within a single frame.

While many of the works mentioned in this chapter make use of a CRF

approach, we are not aware of any prior work on semantic annotation of 3D

maps that fully learns their potentials.

7.2 Learning Depth-Sensitive

Conditional Random Fields

We start with the CRF approach described in section 4.3, where nodes represent

a labeling of superpixels. Recall the general form of the energy

g(x, y) =
∑

v∈V

ψv(x, yv) +
∑

(v,w)∈E

ψv,w(x, yv, yw). (7.1)

Here V enumerates the superpixels, and E ⊂ V × V is a set of edges, encoding

adjacence between superpixels.

In contrast to competing approaches, the learning the parameters of the CRF

using an SSVM allows for a principle, maximum-margin based, loss-sensitive

training of CRFs. Learning the potentials yields much more complex interactions

than the simple Potts potentials that are often used in the literature.

The features used to learn the potentials are described in detail below. We

use the 1-slack formulation of the structural SVM [Joachims et al., 2009] as

implemented in PyStruct and described in Chapter 4. The combination of

fusion moves and AD3 described in Chapter 6 allows us to learn the SSVM to

optimality exactly.

7.2.1 Low Level Segmentation

We take a super-pixel based approach to semantic segmentation. Our superpixel

generation is based on the SLIC algorithm [Achanta et al., 2012] described in

Section 4.3. We extend the standard SLIC algorithm, which works on the Lab

space, to also include depth information. The resulting algorithm is a localized

k-means in Lab-D-XY space. Our implementation is publicly available through

88

7.2 Learning Depth-Sensitive Conditional Random Fields

Figure 7.2: Visualization of the height computed using the method described in Sec-
tion 7.2.2. Input images are shown on the left (depth not shown), the com-
puted height is depicted on the right. The top row exemplifies a typical scene,
while the bottom row shows a scene without horizontal surfaces, where our
method fails.

the scikit-image library∗. Similar to Silberman et al. [2012], we found little

visual improvement over the RGB segmentation when using additional depth

information. On the other hand, estimation of per-superpixel features based on

the 3D point cloud was more robust when including depth information into the

superpixel procedure. The resulting superpixels are compact in the 2D image. As

the density of the corresponding point cloud is dependent on the depth, we did

not succeed in creating superpixels that are compact in 3D while maintaining a

meaningful minimum size.

∗❤tt♣✿✴✴s❝✐❦✐t✲✐♠❛❣❡✳♦r❣

89

7 Learning Depth-Sensitive Conditional Random Fields

7.2.2 Unary Image Features

Our method builds on the probability output of a random forest, trained for

pixel-wise classification of the structure classes. We use the GPU implementation

provided by Stückler et al. [2013]†. The input for training are the full RGB-D

images, transformed to Lab color space. Each tree in the forest uses training pixels

only from a subset of training images. For each training image, an equal number

of pixels for each occurring class is sampled. Split features are given by difference

of regions on color or depth channels. Region size and offsets are normalized

using the depth at the target pixel. We accumulate the probabilistic output for

all pixels within a superpixel, and use the resulting distribution as a feature for

the unary node potentials in our CRF model. We augment these prediction

with another feature, based on the height of a superpixel in 3D. This is a very

informative feature, in particular to determine the floor. To compute the height

of a (super) pixel, we first find the “up” direction. We use a very simple approach

that we found effective: we cluster normal directions of all pixels into 10 clusters

using k-means, and use the one that is most parallel to the Y direction, which

roughly corresponds to height in the dataset. We then project the 3D point cloud

given by the depth along this direction, and normalize the result between 0 and 1.

This procedure works robustly if there is some horizontal surface in the image,

such as the ground or a table. A few scenes contain only walls and furniture, and

the approach fails for these. Figure 7.2 illustrates a typical case and one of the

much rarer failure cases. While we could use a more elaborate scheme, such as

the one from Silberman et al. [2012], we suspect that the feature is of little use in

scenes without horizontal surfaces.

7.2.3 Pairwise Depth-Sensitive Features

There are five different features used to build pairwise potentials in our model:

Constant A constant feature allows to model general neighborhood relations.

†❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴❞❡❡♣❧❡❛r♥✐♥❣❛✐s✴❝✉r❢✐❧

90

7.2 Learning Depth-Sensitive Conditional Random Fields

Figure 7.3: Visualization of one of the pairwise features, the similarity between superpixel
normals. The image shows the zoom-in of a bedroom scene, together with
the superpixel over-segmentation. Lines connect adjacent superpixels, and
line-strength gives the magnitude of the orientation similarity.

Color Contrast We employ a non-linear color contrast, as is common in the

computer vision literature, between the superpixel mean colors ci and cj :

exp
(

−γ‖ci − cj‖
2
)

.

Vertical Alignment We model the directed angle between superpixel centers

in the 2D image plane. This allows the model to learn that “structure” is above

“floor”, but not the other way around.

Depth Difference We include the signed depth difference between superpixels,

which allows the model to detect depth discontinuities that are not represented

in the 2D neighborhood graph of the superpixels.

Normal Orientations Differences in normal vector orientation are a strong

clue on whether two superpixels belong to the same surface, and therefore

91

7 Learning Depth-Sensitive Conditional Random Fields

ground structure furniture prop class avg. pixel avg.

RF 90.8 81.6 67.9 19.9 65.0 68.3
RF + SP 92.5 83.3 73.8 13.9 65.7 70.1
RF + SP + SVM 94.4 79.1 64.2 44.0 70.4 70.3
RF + SP + CRF 94.9 78.9 71.1 42.7 71.9 72.3

Silberman et al. [2012] 68 59 70 42 59.6 58.6
Couprie et al. [2013] 87.3 86.1 45.3 35.5 63.5 64.5

Stückler et al. [2013]† 95.6 83.0 75.1 14.2 67.0 70.9

Table 7.1: Quantitative comparison of the proposed method with the literature. The
best value in each column is printed in bold†. The upper part of the table
shows contributions by different parts of our pipeline. RF stands for random
forest prediction, RF + SP for aggregated random forests prediction within
superpixels, RF + SP + SVM for an SVM trained on the unary potentials, and
RF + SP + CRF is our proposed pipeline. We optimized our approach for
class average accuracy.
† Note that the work of Stückler et al. [2013] is not directly comparable, as they
integrated information over multiple frames, and did not measure accuracy for pixels
without valid depth measurement.

the same structural class. We compute the 3D orientation of normals using the

method of Holz et al. [2011], as implemented in the point cloud library (pcl)‡. All

normals within a superpixel are then averaged, to get a single orientation for each

superpixel. The feature is computed as the difference of π
4
and the (undirected)

angle between the normals belonging to two adjacent superpixels. The feature is

illustrated in Figure 7.3. The change in normal orientation highlights that pillow

and wall are distinct objects, even though there is no strong distinction in color

or depth.

7.3 Experiments

We evaluate our approach on the public NYU segmentation dataset V2 of indoor

scenes. The dataset comes with a detailed annotation of 1449 indoor RGB-D

images belonging to a wide variety of indoor scenes, categorized into 26 scene

classes. The annotation contains four semantic structural classes: structure, floor,

furniture and prop. As in the MSRC-21 and Pascal VOC datasets, there is an

additional “void” class, which is used for object boundaries and hard-to-annotate

‡❤tt♣✿✴✴♣♦✐♥t❝❧♦✉❞s✳♦r❣

92

7.3 Experiments

regions. We follow the literature in excluding these pixels completely from the

evaluation. We optimize our model for average class accuracy (the mean of the

diagonal of the confusion matrix), which puts more emphasis on the harder

classes of prop and furniture, which have smaller area than structure and floor.

Our approach is implemented using our PyStruct library introduced in Sec-

tion 4.4. All hyper-parameters were adjusted using 5-fold cross-validation. The

hyper parameters of the random forests were found using the hyperopt frame-

work of Bergstra et al. [2011]. For the CRF model, the only hyper-parameters are

related to the superpixel segmentation, and the single hyper-parameter C of the

structural SVM formulation. These were adjusted using grid-search. We found

500 superpixels per image to work best, which allow for a maximum possible

performance of 95% average class accuracy on the validation set.

We observed that the linear programming relaxation often found an integer

solution, without the need for a branch-and-bound procedure. We also found

that using fusion moves alone produced inferior results.

Table 7.1 compares different components of our approach with the literature.

Note that we first designed our final model, using only the validation data. We

now report accuracies of simpler models for reference, however these results were

not used for model selection. To separate the influence of loss-based training and

the spatial reasoning of the CRF, we also train a usual support vector machine

(SVM) on the unary potentials for comparison.

The random forest prediction, as reported in Stückler et al. [2013] is already

quite competitive. Grouping into superpixels slightly improves performance, by

removing high-frequency noise and snapping to object boundaries. Somewhat sur-

prisingly, using a standard unstructured SVM with rescaled loss already advances

the mean accuracy decidedly above the previous state-of-the-art. We attribute

this mostly to the ability of the SVM to exploit correlation between classes and

uncertainty within the superpixels. Additionally, the SVM has access to the

“height” feature, that was not included in the random forest. This performance is

still improved upon, both in class average and pixel average performance by the

learned CRF approach, yielding the best published result so far for both measures.

The increase over the standard SVM is 1.5% for class average accuracy and 2.0%

for pixel average accuracy.

A visualization of the impact of each processing step can be found in Figure 7.5,

which shows prediction results on the test set. The four prediction methods

93

7 Learning Depth-Sensitive Conditional Random Fields

structure prop furniture ground

structure

prop

furniture

ground

vertical alignment

0.06

0.03

0.00

0.03

0.06

0.09

0.12

0.15

Figure 7.4: Visualization of some of the learned potentials. The right potential is applied
to relative depth between superpixels, the second on the feature encoding
whether one superpixel is above the other in the image. See section 7.3 for
details.

correspond to the rows of Table 7.1. The difference between the SVM and CRF

approaches are clearly visible, with the CRF producing results that are very close

to the ground truth in several complex scenes.

We found that our approach improves results most for scenes with a clear

geometric structure, which is not surprising. We see that evidence from the

random forest is often very noisy, and biased away from the “prop” class. While

the unstructured SVM can correct somewhat for the class imbalance, it has no

way to make larger areas consistent, which the CRF can. On the other hand,

performance of the CRF deteriorates slightly on very crowded scenes with a

mixture of small furniture and prop objects, as can be seen in the two right-most

images. In these scenes, depth information is often noisy, and it is hard to make

geometric statements on the superpixel level. As the input from the random

forest is also often of low quality for crowded scenes, the CRF has little chance

to recover. Figure 7.4 visualizes some learned potential functions. Higher values

correspond to favored configurations. One can see that the vertical alignment

potential expresses that the floor is much more likely to be below other classes. It

also encodes the fact that prop rest on furniture, but not the other way around.

The potential of the depth feature encodes, for example, that the ground is usually

behind the other classes, while furniture is in front of structures, such as the wall.

Interestingly, the potential functions are not anti-symmetric, and forcing them to

94

7.4 Summary and Discussion

be so degrades the results. This suggests that the direction of connecting edges,

going from the top left to the bottom right in the image, is also exploited by the

potentials.

7.4 Summary and Discussion

We introduce a CRF formulation for semantic segmentation of structure classes in

RGB-D images. We base our model on the output of an efficient GPU implemen-

tation of random forest, and model spatial neighborhood using a superpixel-based

approach. We combine color, depth and 3D orientation features into an energy

function that is learned using the SSVM approach. By explicitly modeling 3D

relations in a fully learned framework, we improve the state-of-the-art on the

NYU dataset V2 for semantic annotation of structure classes.

While our approach allows modeling of spatial relations, these are limited to

local interactions. In future work, these interactions could be extended to larger

areas using latent variable models or higher order potentials [Ladicky et al., 2009].

Another possible line of future investigation is to combine our approach with

a more task-specific one, directly including support plane assumptions into the

model, as done by Silberman et al. [2012]. Finally, we could also combine our

single-frame approach with the approach of Stückler et al. [2013], which fuses

individual views in 3D to exploit temporal coherence.

We did not explicitly address real time application; the random forest imple-

mentation that we build upon allows for real-time processing [Stückler et al.,

2013]. The SLIC superpixel algorithm can also be implemented on GPU in

real-time, as was demonstrated by [Ren and Reid, 2011], and similarly the normal

features we use also have real-time capabilities [Holz et al., 2011]. Finally, fusion

move inference for our model is very efficient for our model, opening up the

possibility to implement our approach entirely in real time.

95

7 Learning Depth-Sensitive Conditional Random Fields

Input Image

Random Forest Prediction

Superpixel Voting

Support Vector Machine on Superpixels

Conditional Random Field on Superpixels

Ground Truth

Ground Structure Furniture Props Void

Figure 7.5: Qualitative evaluation of the CRF. The first three images illustrate errors in
the original prediction that can be corrected, while the second two images il-
lustrate failure modes. Pixels marked as void are excluded from the evaluation.
See Section 7.3 for details.

96

8 Conclusion

In this thesis, we explored the use of structured prediction methods for semantic

segmentation and object class segmentation of natural images, an important step

towards general scene understanding. We use the paradigm of structured predic-

tion, which allows for a principled integration of context and object relations.

We focused on learning of structural models and the interaction of inference and

learning in the neighborhood models typically employed for semantic segmen-

tation. We presented an open source software implementation of a variety of

popular learning algorithms for structural support vector machines, together with

a thorough evaluation of their properties, in particular when using approximate

inference. Our software provides a foundation for future research into learning,

inference and models for computer vision by providing extensive examples and

benchmarks.

We showed that effective use of available inference mechanisms enables exact

learning, even in the presence of loops in the underlying factor graph. Our

methods achieve competitive performance with similar methods on the Pascal

VOC 2010 dataset, and improve upon state-of-the-art results on the MSRC-21

dataset. We demonstrated the power of conditional interactions by learning

spatial interactions in an RGB-D setting. Here, our approach improves upon the

state-of-the art on the NYU V2 benchmark for annotation of semantic structure

classes.

We also presented a novel approach for clustering based on information theo-

retic principles. Our algorithm improves upon methods from the literature in

finding pre-defined classes on a wide range of datasets. This indicates that in the

task of extracting superpixels, we can also hope to achieve better results than the

k-means based SLIC algorithm that we used.

As manual annotation of images for learning semantic segmentation and object

class recognition is laborious and error-prone, we suggested a method to learn

object class segmentation for complex object classes from image-level annotations

97

8 Conclusion

alone. Our approach is formulated using multiple instance learning over a set

of candidate segments. We demonstrated the feasibility and effectiveness of our

approach on the challenging Graz-02 dataset of street scenes.

8.1 Future Directions

There are several directions for future research that we think would be interesting

to pursue as an extension of the presented results:

Large-Scale Weakly Supervised Object Class Segmentation We demon-

strated a new method for object class segmentation using only weak supervision.

One of the main advantages of such a method is that it is potentially able to

exploit the large amount of weakly labeled data that is available on the internet.

Using additional, weakly labeled training data, and evaluating on the given, man-

ually annotated data, is therefore a promising path for improving the presented

results.

Cached Inference for BCFW We saw in Chapter 5 that the 1-slack cutting

plane algorithm benefits immensely from caching inference results during training.

Therefore, investigating the influence of caching for BCFW (see Section 4.2.4)

seems a promising topic for future research.

Theoretical Analysis of the n-Slack Algorithm As we have seen in Chap-

ter 5, the n-slack algorithm often converges very fast in terms of passes over

the training data This is in stark contrast to the known theoretical convergence

guarantee, which is the slowest of all the algorithms we considered with O(1
ǫ2
)∗.

It seem as if the approach of Lacoste-Julien et al. [2013] can yield a better con-

vergence guarantee, but it is also worth investigating the direction pursued by

Shalev-Shwartz and Zhang [2012].

Inference Machines Recently Stoyanov et al. [2011] started a new trend in

structured prediction, which is sometimes called “inference machines”. The basic

∗This is in terms of calls to the QP. We are not aware of any analysis in terms of inference calls
or passes over the training set.

98

8.1 Future Directions

principle is simple: the process of prediction using a given inference procedure is

viewed as a feed-forward method for prediction, and parameters of this prediction

process are optimized directly using empirical risk minimization. The work of

Stoyanov et al. [2011] used loopy belief propagation as their inference algorithm

and the optimization is carried out simply using gradient descent on the non-

convex but differentiable loss function. Other recent work in this direction

includes Krähenbühl and Koltun [2013], who used mean-field inference in a fully

connected conditional random field and Jancsary et al. [2013], who used closed

form inference in a Gaussian CRF. While these algorithms show great promise,

their relation to the traditional approach of structured prediction used in this

work is mostly unclear. In particular, if exact traditional learning is possible

in a model, it is uncertain how much in accuracy and efficiency can be gained

by direct empirical risk minimization. Only limited empirical comparison is

available, and we are not aware of theoretical work in this direction, leaving much

room for future investigation.

Non-Linear Models In this work, we only considered models that are linear

in the input features—though features are highly non-linear in the original input

pixels. Allowing non-linear interactions increases the representational power

of a CRF, possibly leading to more accurate prediction results. Kernelization

of structural support vector machines is straight-forward in theory, but had

only limited success in the context of CRFs for image segmentation [Lucchi

et al., 2012]. Two major alternatives for non-linear CRFs were proposed in the

literature, conditional neural fields [Peng et al., 2009] based on neural networks,

and decision tree fields (DTFs) [Nowozin et al., 2011], based on decision trees.

Conditional neural fields have only been applied to sequence classification so far,

and extending them to our setting of semantic image segmentation would be very

interesting. DTFs on the other hand have been applied to loopy graphs for image

processing, but not for higher-level tasks such as semantic segmentation. If it is

possible to include context in a meaningful way, it might be possible to address

even object-centric tasks such as object class segmentation with DTFs.

Higher Order Potentials and Latent Variable Models While non-linear

potentials would allow for more complex interactions between inputs and label-

ings, introducing higher order potentials [Kohli et al., 2009, Ladicky et al., 2009]

99

8 Conclusion

or latent variables [Dann et al., 2012] allows the model to express more complex

interactions within the output variables. Possible examples are consistency of

larger regions, learning parts or learning of scene classes and co-occurrences. In

principle, higher order potentials and latent variable models are equivalent, in

that each energy function expressed in either form can be transformed into an

energy function of the other kind. In practice, learning of higher order potentials

for semantic segmentation has received little attention, while approaches using

latent variables are often limited by the non-convexity of learning. It would be

interesting to compare current methods using latent variable and higher order

approaches, and see how these interact with different inference and learning

schemes.

Feature Design This work mostly focused on learning methods, and less on

the input—with the exception of Chapter 7, which explores the use of 3D features

for semantic segmentation of indoor scenes. It is clear, however, that the input

features play an important role in the performance of any system. Using our

approach for exact learning of loopy graphs, it seems to be worthwhile to revisit

the works of Nowozin et al. [2010] and Lucchi et al. [2011], that evaluate the

impact of input features and piecewise training, and of the importance of global

constraints versus global features, respectively. In particular the importance of

features for pairwise potentials has been somewhat overlooked in the computer

vision literature, often being reduced to a single constant or contrast sensitive

feature.

100

9 Bibliography

Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua,

and Sabine Süsstrunk. SLIC Superpixels Compared to State-of-the-Art Super-

pixel Methods. Pattern Analysis and Machine Intelligence, 2012.

Feliv V Agakov and David Barber. Kernelized infomax clustering. In Neural

Information Processing Systems, 2006.

Stuart Andrews, Ioannis Tsochantaridis, and Thomas Hofmann. Support vector

machines for multiple-instance learning. 2003.

Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, and Joydeep Ghosh.

Clustering with Bregman divergences. Journal of Machine Learning Research, 6,

2005.

James Bergstra, Rémi Bardenet, Yoshua Bengio, Balázs Kégl, et al. Algorithms for

hyper-parameter optimization. In Neural Information Processing Systems, 2011.

Andrew Blake, Pushmeet Kohli, and Carsten Rother. Markov random fields for

vision and image processing. MIT Press, 2011.

Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy min-

imization via graph cuts. Pattern Analysis and Machine Intelligence, 23(11),

2001.

Steve Branson, Oscar Beijbom, and Serge Belongie. Efficient large-scale structured

learning. In Computer Vision and Pattern Recognition, 2013.

Joao Carreira and Cristian Sminchisescu. Constrained parametric min-cuts for

automatic object segmentation. In Computer Vision and Pattern Recognition,

2010.

101

9 Bibliography

Bryan Catanzaro, Bor-Yiing Su, Narayanan Sundaram, Yunsup Lee, Mark Mur-

phy, and Kurt Keutzer. Efficient, high-quality image contour detection. In

International Converence on Computer Vision, 2009.

Yixin Chen, Jinbo Bi, and James Z Wang. MILES: Multiple-instance learning via

embedded instance selection. Pattern Analysis and Machine Intelligence, 2006.

C Chow and C Liu. Approximating discrete probability distributions with

dependence trees. Information Theory, 14(3), 1968.

Luis Pedro Coelho. Mahotas: Open source software for scriptable computer

vision. Journal of Open Research Software, 1, 2013.

Camille Couprie, Clement Farabet, Laurent Najman, and Yann LeCun. Indoor

semantic segmentation using depth information. In International Conference

on Learning Representations, 2013.

Joachin Dahl and Lieven Vandenberghe. Cvxopt: A python package for convex

optimization. In European Converence on Computer Vision, 2006.

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human

detection. In Computer Vision and Pattern Recognition, volume 1, 2005.

Christoph Dann, Peter Gehler, Stefan Roth, and Sebastian Nowozin. Pottics–the

potts topic model for semantic image segmentation. In German Conference on

Pattern Recognition (DAGM), 2012.

Inderjit S Dhillon, Subramanyam Mallela, and Rahul Kumar. A divisive infor-

mation theoretic feature clustering algorithm for text classification. Journal of

Machine Learning Research, 3, 2003.

Thomas G Dietterich, Richard H Lathrop, and Tomás Lozano-Pérez. Solving the

multiple instance problem with axis-parallel rectangles. Artificial Intelligence,

89(1-2), 1997.

Ian Endres and Derek Hoiem. Category independent object proposals. In

European Converence on Computer Vision, 2010.

102

9 Bibliography

Mark Everingham, Luc Van Gool, Christopher K I Williams, John Winn, and

Andrew Zisserman. The Pascal Visual Object Classes (VOC) Challenge. Inter-

national Journal of Computer Vision, 88, 2010.

Lev Faivishevsky and Jacob Goldberger. A nonparametric information theoretic

clustering algorithm. In International Conference on Machine Learning, 2010.

Clement Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. Learning

hierarchical features for scene labeling. Pattern Analysis and Machine Intelligence,

2013.

Thomas Finley and Thorsten Joachims. Training structural SVMs when exact

inference is intractable. In International Conference on Machine Learning, 2008.

Brian Fulkerson, Andrea Vedaldi, and Stefano Soatto. Class segmentation and

object localization with superpixel neighborhoods. In International Converence

on Computer Vision, 2009.

Thomas Gärtner, Peter A Flach, Adam Kowalczyk, and Alexander J Smola.

Multi-instance kernels. In International Conference on Machine Learning, 2002.

Erhan Gokcay and Jose C Principe. Information theoretic clustering. Pattern

Analysis and Machine Intelligence, 24, 2002.

Ryan Gomes, Andreas Krause, and Pietro Perona. Discriminative clustering

by regularized information maximization. In Neural Information Processing

Systems, 2010.

Josep M Gonfaus, Xavier Boix, Joost van de Weijer, Andrew D Bagdanov, Joan

Serrat, and Jordi Gonzalez. Harmony potentials for joint classification and

segmentation. In Computer Vision and Pattern Recognition, 2010.

John C Gower and GJS Ross. Minimum spanning trees and single linkage cluster

analysis. Applied Statistics, 1969.

Oleksandr Grygorash, Yan Zhou, and Zach Jorgensen. Minimum spanning tree

based clustering algorithms. In International Converence on Tools with Artificial

Intelligence, 2006.

103

9 Bibliography

Tamir Hazan and Raquel Urtasun. A primal-dual message-passing algorithm

for approximated large scale structured prediction. In Neural Information

Processing Systems, 2010.

Xuming He, Richard S Zemel, and Miguel A Carreira-Perpinán. Multiscale

conditional random fields for image labeling. In Computer Vision and Pattern

Recognition, volume 2, 2004.

Alfred O Hero III and Olivier J J Michel. Asymptotic theory of greedy ap-

proximations to minimal k-point random graphs. Information Theory, 45,

1999.

Dirk Holz, Stefan Holzer, Radu Bogdan Rusu, and Sven Behnke. Real-Time Plane

Segmentation using RGB-D Cameras. In RoboCup International Symposium,

2011.

Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classifica-

tion, 2, 1985.

Jeremy Jancsary, Sebastian Nowozin, and Carsten Rother. Learning convex qp

relaxations for structured prediction. In International Conference on Machine

Learning, 2013.

Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu. Cutting-plane

training of structural SVMs. Machine Learning, 77(1), 2009.

Sepandar D Kamvar, Dan Klein, and D Manning, Christopher. Spectral learning.

In International Joint Conference of Artificial Intelligence, 2003.

Jörg H Kappes, Bjoern Andres, Fred A Hamprecht, Christoph Schnörr, Sebastian

Nowozin, Dhruv Batra, Sungwoong Kim, Bernhard X Kausler, Jan Lellmann,

Nikos Komodakis, et al. A comparative study of modern inference techniques

for discrete energy minimization problems. In Computer Vision and Pattern

Recognition, 2013.

Pushmeet Kohli, Philip HS Torr, et al. Robust higher order potentials for

enforcing label consistency. International Journal of Computer Vision, 82(3),

2009.

104

9 Bibliography

Nikos Komodakis. Efficient training for pairwise or higher order crfs via dual

decomposition. In Computer Vision and Pattern Recognition, 2011.

Philipp Krähenbühl and Vladlen Koltun. Efficient inference in fully connected

CRFs with Gaussian edge potentials. 2012.

Philipp Krähenbühl and Vladlen Koltun. Parameter learning and convergent

inference for dense random fields. In International Conference on Machine

Learning, 2013.

Simon Lacoste-Julien, Mark Schmidt, and Francis Bach. A simpler approach

to obtaining an o (1/t) convergence rate for projected stochastic subgradient

descent. arXiv preprint arXiv:1212.2002, 2012.

Simon Lacoste-Julien, Martin Jaggi, Mark Schmidt, and Patrick Pletscher. Block-

coordinate frank-wolfe optimization for structural svms. In International

Conference on Machine Learning, 2013.

L’ubor Ladicky, Chris Russell, Pushmeet Kohli, and Philip HS Torr. Associa-

tive hierarchical CRFs for object class image segmentation. In International

Converence on Computer Vision, 2009.

Christian Leistner, Amir Saffari, and Horst Bischof. MIForests: Multiple-instance

learning with randomized trees. European Converence on Computer Vision,

2010.

Victor Lempitsky, Carsten Rother, Stefan Roth, and Andrew Blake. Fusion

moves for markov random field optimization. Pattern Analysis and Machine

Intelligence, 32(8), 2010.

Fuxin Li and Cristian Sminchisescu. Convex multiple-instance learning by

estimating likelihood ratio. In Neural Information Processing Systems, 2010.

Fuxin Li, Joao Carreira, and Cristian Sminchisescu. Object recognition as ranking

holistic figure-ground hypotheses. In Computer Vision and Pattern Recognition,

2010.

Fuxin Li, Joao Carreira, Guy Lebanon, and Cristian Sminchisescu. Composite

statistical inference for semantic segmentation. In Computer Vision and Pattern

Recognition, 2013.

105

9 Bibliography

Yu-Feng Li, James R Kwok, Ivor W Tsang, and Zhi-Hua Zhou. A convex method

for locating regions of interest with multi-instance learning. Machine Learning

and Knowledge Discovery in Databases, 2009.

Stuard P Lloyd. Least squares quantization in PCM. Information Theory, 28,

1982.

David G Lowe. Distinctive image features from scale-invariant keypoints. Inter-

national Journal of Computer Vision, 60(2), 2004.

Aurélien Lucchi, Yunpeng Li, Xavier Boix, Kevin Smith, and Pascal Fua. Are spa-

tial and global constraints really necessary for segmentation? In International

Converence on Computer Vision, 2011.

Aurélien Lucchi, Yunpeng Li, Kevin Smith, and Pascal Fua. Structured image

segmentation using kernelized features. In European Converence on Computer

Vision, 2012.

Aurélien Lucchi, Yunpeng Li, and Pascal Fua. Learning for structured prediction

using approximate subgradient descent with working sets. In Computer Vision

and Pattern Recognition, 2013.

James B MacQueen. Some methods for classification and analysis of multivariate

observations. In Berkeley Symposium on Mathematical Statistics and Probability,

1967.

Michael Maire, Pablo Arbeláez, Charless Fowlkes, and Jitendra Malik. Using

contours to detect and localize junctions in natural images. In Computer Vision

and Pattern Recognition, 2008.

Olvi L Mangasarian and Edward W Wild. Multiple instance classification via

successive linear programming. Journal of Optimization Theory and Applications,

137(3), 2008.

March, William B, Ram, Parikshit, and Gray, Alexander G. Fast Euclidean

minimum spanning tree: algorithm, analysis, applications. In International

Conference on Knowledge Discovery and Data Mining, 2010.

Marcin Marszatek and Cordelia Schmid. Accurate object localization with shape

masks. In Computer Vision and Pattern Recognition, 2007.

106

9 Bibliography

André FT Martins, Mário AT Figueiredo, Pedro MQ Aguiar, Noah A Smith, and

Eric P Xing. An augmented lagrangian approach to constrained map inference.

In International Conference on Machine Learning, 2011.

Amir Massoud Farahmand, Csaba Szepesvári, and Jean-Yves Audibert. Manifold-

adaptive dimension estimation. In International Conference on Machine Learn-

ing, 2007.

Ofer Meshi, David Sontag, Tommi Jaakkola, and Amir Globerson. Learning effi-

ciently with approximate inference via dual losses. In International Conference

on Machine Learning, 2010.

Joris M Mooij. libDAI: A free and open source C++ library for dis-

crete approximate inference in graphical models. Journal of Machine Learn-

ing Research, 11, 2010. URL ❤tt♣✿✴✴✇✇✇✳❥♠❧r✳♦r❣✴♣❛♣❡rs✴✈♦❧✉♠❡✶✶✴

♠♦♦✐❥✶✵❛✴♠♦♦✐❥✶✵❛✳♣❞❢.

Roozbeh Mottaghi, Sanja Fidler, Jian Yao, Raquel Urtasun, and Devi Parikh. An-

alyzing semantic segmentation using hybrid human-machine crfs. In Computer

Vision and Pattern Recognition, 2013.

Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: analysis

and an algorithm. In Neural Information Processing Systems, 2002.

Nam Nguyen. A New SVM Approach to Multi-instance Multi-label Learning.

In International Conference on Data Mining, 2010.

Sebastian Nowozin and Christoph H Lampert. Structured learning and prediction

in computer vision. Now publishers Inc, 2011.

Sebastian Nowozin, Peter V Gehler, and Christoph H Lampert. On parameter

learning in CRF-based approaches to object class image segmentation. In

European Converence on Computer Vision. 2010.

Sebastian Nowozin, Carsten Rother, Shai Bagon, Toby Sharp, Bangpeng Yao, and

Pushmeet Kohli. Decision tree fields. In International Converence on Computer

Vision, 2011.

Andreas Nüchter and Joachim Hertzberg. Towards semantic maps for mobile

robots. Robotics and Autonomous Systems, 2008.

107

9 Bibliography

Stephen Malvern Omohundro. Five balltree construction algorithms. International

Computer Science Institute Berkeley, 1989.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python.

Journal of Machine Learning Research, 12, 2011.

Jian Peng, Liefeng Bo, and Jinbo Xu. Conditional neural fields. In Neural

Information Processing Systems, 2009.

William M Rand. Objective criteria for the evaluation of clustering methods.

Journal of the American Statistical association, 1971.

Nathan Ratliff, J. Andrew (Drew) Bagnell, and Martin Zinkevich. (online)

subgradient methods for structured prediction. In Artificial Intelligence and

Statistics, March 2007.

Radim Řehůřek and Petr Sojka. Software Framework for Topic Modelling with

Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges

for NLP Frameworks, 2010.

Carl Yuheng Ren and Ian Reid. gSLIC: a real-time implementation of SLIC

superpixel segmentation. University of Oxford, Department of Engineering,

Technical Report, 2011.

Xiaofeng Ren, Liefeng Bo, and Dieter Fox. RGB-(D) Scene Labeling: Features

and Algorithms. In Computer Vision and Pattern Recognition, 2012.

Carsten Rother, Vladimir Kolmogorov, Victor Lempitsky, and Martin Szummer.

Optimizing binary MRFs via extended roof duality. In Computer Vision and

Pattern Recognition, 2007.

Hannes Schulz and Sven Behnke. Object-class segmentation using deep convolu-

tional neural networks. In Barbara Hammer and Thomas Villmann, editors,

Proceedings of the DAGMWorkshop on New Challenges in Neural Computation

2011, volume 5 of Machine Learning Reports, 2011.

108

9 Bibliography

Hannes Schulz and Sven Behnke. Learning object-class segmentation with convo-

lutional neural networks. In European Symposium on Artificial Neural Networks

(ESANN), volume 3, 2012.

Sunando Sengupta, Paul Sturgess, Philip HS Torr, et al. Automatic dense visual

semantic mapping from street-level imagery. In Intelligent Robots and Systems,

2012.

Sunando Sengupta, Eric Greveson, Ali Shahrokni, and Philip HS Torr. Urban 3d

semantic modelling using stereo vision. In International Conference on Robotics

and Automation, 2013.

Shai Shalev-Shwartz and Tong Zhang. Proximal stochastic dual coordinate ascent.

arXiv preprint arXiv:1211.2717, 2012.

Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos:

Primal estimated sub-gradient solver for svm. Mathematical Programming, 127,

2011.

Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth

optimization: Convergence results and optimal averaging schemes. arXiv

preprint arXiv:1212.1824, 2012.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. Pattern

Analysis and Machine Intelligence, 22, 2000.

Jamie Shotton, JohnWinn, Carsten Rother, and Antonio Criminisi. Textonboost:

Joint appearance, shape and context modeling for multi-class object recognition

and segmentation. In European Converence on Computer Vision, 2006.

Nathan Silberman and Rob Fergus. Indoor scene segmentation using a structured

light sensor. In Computer Vision Workshops (ICCVWorkshops), 2011.

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor Seg-

mentation and Support Inference from RGBD Images. In European Converence

on Computer Vision, 2012.

Noam Slonim and Naftali Tishby. Agglomerative information bottleneck. Neural

Information Processing Systems, 1999.

109

9 Bibliography

Veselin Stoyanov, Alexander Ropson, and Jason Eisner. Empirical risk minimiza-

tion of graphical model parameters given approximate inference, decoding, and

model structure. In Artificial Intelligence and Statistics, 2011.

Alexander Strehl and Joydeep Ghosh. Cluster ensembles—a knowledge reuse

framework for combining multiple partitions. Journal of Machine Learning

Research, 3, 2003.

Jörg Stückler, Nenad Biresev, and Sven Behnke. Semantic mapping using object-

class segmentation of RGB-D images. In Intelligent Robots and Systems, 2012.

Jörg Stückler, Benedikt Waldvogel, Hannes Schulz, and Sven Behnke. Dense

Real-Time Mapping of Object-Class Semantics from RGB-D Video. Sub-

mitted, 2013. URL ❤tt♣✿✴✴✇✇✇✳❛✐s✳✉♥✐✲❜♦♥♥✳❞❡✴♣❛♣❡rs✴❏❘❚■P❴✷✵✶✸❴

❙t✉❡❝❦❧❡r❴❘❋❴❋✉s✐♦♥✳♣❞❢.

Martin Szummer, Pushmeet Kohli, and Derek Hoiem. Learning CRFs using

graph cuts. In European Converence on Computer Vision, 2008.

Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin markov networks.

Neural Information Processing Systems, 2003.

Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, Yasemin Altun,

and Yoram Singer. Large margin methods for structured and interdependent

output variables. Journal of Machine Learning Research, 6(2), 2006.

Koen EA van de Sande, Theo Gevers, and Cees GM Snoek. Evaluating color

descriptors for object and scene recognition. Pattern Analysis and Machine

Intelligence, 32(9), 2010.

Andrea Vedaldi and Brian Fulkerson. VLFeat: An open and portable library of

computer vision algorithms. ❤tt♣✿✴✴✇✇✇✳✈❧❢❡❛t✳♦r❣✴, 2008.

Andrea Vedaldi and Andrew Zisserman. Efficient additive kernels via explicit

feature maps. In Computer Vision and Pattern Recognition, 2010.

Jakob Verbeek and Bill Triggs. Region classification with Markov field aspect

models. In Computer Vision and Pattern Recognition, 2007.

110

9 Bibliography

Alexander Vezhnevets and Joachim M Buhmann. Towards weakly supervised

semantic segmentation by means of multiple instance and multitask learning.

In Computer Vision and Pattern Recognition, 2010.

Alexander Vezhnevets, Vittorio Ferrari, and Joachim M Buhmann. Weakly

supervised semantic segmentation with a multi-image model. In International

Converence on Computer Vision, 2011.

Song Wang and Jeffrey M Siskind. Image segmentation with Ratio Cut. Pattern

Analysis and Machine Intelligence, 2003.

Michael Wick, Khashayar Rohanimanesh, Kedar Bellare, Aron Culotta, and

Andrew McCallum. Samplerank: Training factor graphs with atomic gradients.

In International Conference on Machine Learning, 2011.

Wei Xia, Zheng Song, Jiashi Feng, Loong-Fah Cheong, and Shuicheng Yan.

Segmentation over detection by coupled global and local sparse representations.

In European Converence on Computer Vision, 2012.

Jian Yao, Sanja Fidler, and Raquel Urtasun. Describing the scene as a whole: Joint

object detection, scene classification and semantic segmentation. In Computer

Vision and Pattern Recognition, 2012.

Charles T Zahn. Graph-theoretical methods for detecting and describing gestalt

clusters. IEEE Transactions on Computers, 100, 1971.

Zheng-Jung Zha, Xian-Sheng Hua, Tao Mei, Jingdong Wang, Guo-Jun Qi, and

Zengfu Wang. Joint multi-label multi-instance learning for image classification.

In Computer Vision and Pattern Recognition, 2008.

Qi Zhang and Sally A Goldman. EM-DD: An improved multiple-instance

learning technique. Neural Information Processing Systems, 2, 2002.

Zhi-Hua Zhou and Min-Ling Zhang. Multi-instance multi-label learning with

application to scene classification. In Neural Information Processing Systems,

2006.

Zhi-Hua Zhou, Yu-Yin Sun, and Yu-Feng Li. Multi-instance learning by treating

instances as non-iid samples. In International Conference on Machine Learning,

2009.

111

