
Homework 5 
 
All assignments need to be submitted via github classroom: 
https://classroom.github.com/g/F65AmlrV 
and on gradescope. You can submit in groups of maximum size two. 
 
The homework is due 05/01/19 at 1pm. 
 
All the tasks are to be completed using the ​keras Sequential interface​. It’s recommended that 
you run your code on GPU using google colab: 
https://colab.research.google.com/ 
You can enable GPU support at “runtime” -> “change runtime type”. 
Feel free to experiment with TPU support if you’re adventurous. 
You can use any other resources at your disposal if you prefer. You should not use k-fold 
cross-validation for any of these tasks. You can use StratifiedShuffleSplit to create a single 
train-validation split for use with GridSearchCV. 
Use of GridSearchCV might not be the best option for any task but task1, though. 
 

Task 1 [10 Points] 
Run a multilayer perceptron (feed forward neural network) with two hidden layers and rectified 
linear nonlinearities on the iris dataset using the keras​ Sequential interface​. Include code for 
selecting regularization strength and number of hidden units using GridSearchCV and 
evaluation on an independent test-set. 
 
 

Task 2 [40 Points] 
Train a multilayer perceptron (fully connected) on the Fashion MNIST dataset using the 
traditional train/test split as given by fashion_mnist.load_data in keras. Use a separate 10000 
samples (from the training set) for model selection and to compute learning curves (accuracy 
vs epochs, not vs n_samples). Compare a “vanilla” model with a model using drop-out 
(potentially a bigger model), and to a model using batch normalization and residual 
connections (but not dropout). Visualize learning curves for all models.  
 

https://classroom.github.com/g/F65AmlrV
https://keras.io/getting-started/sequential-model-guide/
https://colab.research.google.com/
https://keras.io/getting-started/sequential-model-guide/


 

Task 3 [60 Points] 
Train a convolutional neural network on the following dataset: 
https://www.kaggle.com/paultimothymooney/breast-histopathology-images 
 
3.1​ Start with a model without residual connections (using batch normalization is likely to be 
helpful and you should try it, whether you use dropout is your choice). 
 
3.2 ​Augment the data using rotations, mirroring and possibly other transformations. How much 
can you improve your original model by data augmentation? 
 
3.3​ Build a deeper model using residual connections. Show that you can build a deep model 
that would not be able to learn if you remove the residual connections (i.e. compare a deep 
model with and without residual connections while the rest of the architecture is constant). 
 
Hint​: ​Make sure you are doing the reshape for the training set correctly. A direct reshape might 
give you garbled images. Display an image after reshaping to make sure they are correct. 
 

Some additional advice to help you along: 
● Make sure all your code is running on GPU. Use "​sess = 

tf.Session(config=tf.ConfigProto(log_device_placement=True))​" to 
start the tensorflow session to see which device is being used and confirm it is the 
device you intended. 

● Preprocess the images before training a model. 
● Test your code on a small part of the data before training the model. You don't want your 

code to fail on a print statement after waiting for the network to train. 
 

https://www.kaggle.com/paultimothymooney/breast-histopathology-images
https://github.com/fchollet/deep-learning-models

