dabl.SimpleRegressor

class dabl.SimpleRegressor(refit=True, random_state=None, verbose=1, type_hints=None)[source]

Automagic anytime classifier.

Parameters
refitboolean, True

Whether to refit the model on the full dataset (I think).

random_staterandom state, int or None (default=None)

Random state or seed.

verboseinteger, default=1

Verbosity (higher is more output)

type_hintsdict or None

If dict, provide type information for columns. Keys are column names, values are types as provided by detect_types.

__init__(refit=True, random_state=None, verbose=1, type_hints=None)[source]

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None, *, target_col=None)[source]

Fit regressor.

Requires to either specify the target as separate 1d array or Series y (in scikit-learn fashion) or as column of the dataframe X specified by target_col. If y is specified, X is assumed not to contain the target.

Parameters
XDataFrame

Input features. If target_col is specified, X also includes the target.

ySeries or numpy array, optional.

Target class labels. You need to specify either y or target_col.

target_colstring or int, optional

Column name of target if included in X.

get_params(deep=True)

Get parameters for this estimator.

Parameters
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns
paramsmapping of string to any

Parameter names mapped to their values.

score(X, y, sample_weight=None)

Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters
Xarray-like of shape (n_samples, n_features)

Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator.

yarray-like of shape (n_samples,) or (n_samples, n_outputs)

True values for X.

sample_weightarray-like of shape (n_samples,), default=None

Sample weights.

Returns
scorefloat

R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor will use multioutput='uniform_average' from version 0.23 to keep consistent with r2_score(). This will influence the score method of all the multioutput regressors (except for MultiOutputRegressor). To specify the default value manually and avoid the warning, please either call r2_score() directly or make a custom scorer with make_scorer() (the built-in scorer 'r2' uses multioutput='uniform_average').

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters
**paramsdict

Estimator parameters.

Returns
selfobject

Estimator instance.