
Journal of Machine Learning Research 1 (2013) 1-1 Submitted 8/13; Published 10/13

PyStruct - Learning Structured Prediction in Python

Andreas C. Müller amueller@ais.uni-bonn.de

Sven Behnke behnke@cs.uni-bonn.de

Institute of Computer Science, Department VI

University of Bonn

Bonn, Germany

Editor: Mark Reid

Abstract

Structured prediction methods have become a central tool for many machine learning ap-
plications. While more and more algorithms are developed, only very few implementations
are available.

PyStruct aims at providing a general purpose implementation of standard structured
prediction methods, both for practitioners and as a baseline for researchers. It is written in
Python and adapts paradigms and types from the scientific Python community for seamless
integration with other projects.

Keywords: structured prediction, structural support vector machines, conditional ran-
dom fields, Python

1. Introduction

In recent years, a wealth of research in methods for learning structured prediction as well
as in their application in areas such as natural language processing and computer vision
has been performed. Unfortunately, only few implementations are publicly available—many
applications are based on the non-free implementation of Joachims et al. (2009).

PyStruct aims at providing a high-quality implementation with an easy-to-use inter-
face, in the high-level Python language. This allows practitioners to efficiently test a range
of models, as well as allowing researchers to compare to baseline methods much more easily
than this is possible with current implementations. PyStruct is BSD-licensed, allowing
modification and redistribution of the code, as well as use in commercial applications. By
embracing paradigms established in the scientific Python community and reusing the in-
terface of the widely-used scikit-learn library (Pedregosa et al., 2011), PyStruct can
be used in existing projects, replacing standard classifiers. The online documentation and
examples help new users understand the somewhat abstract ideas behind structured pre-
diction.

2. Structured Prediction and Casting it into Software

Structured prediction can be defined as making a prediction f(x) by maximizing a compati-
bility function between an input x and the possible labels y (Nowozin and Lampert, 2011).
Most current approaches use linear combinations of feature functions to measure compati-
bility:

f(x) = arg max
y∈Y

θTΨ(x, y). (1)

c©2013 Andreas C. Müller and Sven Behnke.



Müller and Behnke

Here, y is a structured label, Ψ is a joint feature function of x and y, and θ are parameters
of the model. Structured means that y is more complicated than a single output class, for
example a label for each word in a sentence or a label for each pixel in an image. Learning
structured prediction means learning the parameters θ from training data.
Using the above formulation, learning can be broken down into three sub-problems:

P1: Optimizing the objective with respect to θ.
P2: Encoding the structure of the problem in a joint feature function Ψ.
P3: Solving the maximization problem in Equation 1.

The later two problems are usually tightly coupled, as the maximization in Equation 1 is
usually only feasible by exploiting the structure of Ψ, while the first is treated as inde-
pendent. In fact, when P3 cannot be performed exactly, learning θ strongly depends on
the quality of the approximation. However, treating approximate inference and learning as
a joint optimization problem is currently out of the scope of the package, and we imple-
ment a more modular setup. PyStruct takes an object-oriented approach to decouple the
task-dependent implementation of P2 and P3 from the general algorithms used to solve P1.

Estimating θ is done in learner classes, which currently support cutting plane algo-
rithms for structural support vector machines (SSVM) (Joachims et al., 2009)), subgradient
methods for SSVMs (Ratliff et al., 2007), block-coordinate Frank-Wolfe (BCFW) (Lacoste-
Julien et al., 2012), and the structured perceptron and latent variable SSVMs (Yu and
Joachims, 2009). The cutting plane implementation uses the cvxopt package (Dahl and
Vandenberghe, 2006) for quadratic optimization. Encoding the structure of the problem is
done using model classes, which compute Ψ and encode the structure of the problem. The
structure of Ψ determines the hardness of the maximization in Equation 1 and is a crucial
factor in learning. PyStruct implements models (corresponding to particular forms of Ψ)
for many common cases, such as multi-class and multi-label classification, conditional ran-
dom fields with constant or data-dependent pairwise potentials, and several latent variable
models. The maximization for finding y in Equation 1 is carried out using external libraries,
such as OpenGM (Kappes et al., 2013), LibDAI (Mooij, 2010) and others. This allows
the user to choose from a wide range of optimization algorithms, including (loopy) belief
propagation, graph-cuts, QPBO, dual subgradient, MPBP, TRWs, LP and many other al-
gorithms. For problems where exact inference is infeasible, PyStruct allows the use of
linear programming relaxations, and provides modified loss and feature functions to work
with the continuous labels. This approach, which was outlined in Finley and Joachims
(2008), allows for principled learning when exact inference is intractable. When using ap-
proximate integral solvers, learning may finish prematurely and results in this case depend
on the inference scheme and learning algorithm used.

Table 1 lists algorithms and models that are implemented in PyStruct and compares
them to other public structured prediction libraries: Dlib (King, 2009), SVMstruct (Joachims
et al., 2009), and CRFsuite (Okazaki, 2007). We also report the programming language
and the project license.

2



PyStruct- learning structured prediction in Python

Package Language License Algorithms Models

CP SG BCFW LV ML Chain Graph LDCRF

PyStruct Python BSD∗ X∗ X X X × X X X
SVMstruct C++ non-free X × × X × × × ×
Dlib C++ boost X × × × × X X ×
CRFsuite C++ BSD × × × × X X × ×

CP—cutting plane optimization of SSVM, SG—online subgradient optimization of SSVM, LV— latent vari-
able SSVM, ML—maximum likelihood learning, Chain—chain-structured models with pairwise interactions,
Graph—arbitrary graphs with pairwise interactions, LDCRF—latent dynamic CRF (Morency et al., 2007).
∗PyStruct itself is BSD licensed, but uses the GPL-licensed package cvxopt for cutting-plane learning.

Table 1: Comparison of structured prediction software packages.

3. Usage Example: Semantic Image Segmentation

Conditional random fields are an important tool for semantic image segmentation. We
demonstrate how to learn an n-slack support vector machine (Tsochantaridis et al., 2006) on
a superpixel-based CRF on the popular Pascal dataset. We use unary potentials generated
using TextonBoost from Krähenbühl and Koltun (2012). The superpixels are generated
using SLIC (Achanta et al., 2012).1 Each sample (corresponding on one entry of the list X)
is represented as a tuple consisting of input features and a graph representation.

1 model = crfs.EdgeFeatureGraphCRF(

2 class_weight=inverse_frequency, symmetric_edge_features=[0, 1],

3 antisymmetric_edge_features=[2], inference_method=’qpbo’)

4
5 ssvm = learners.NSlackSSVM(model, C=0.01, n_jobs=-1)

6 ssvm.fit(X, Y)

Listing 1: Example of defining and learning a CRF model.

The source code is shown in Listing 1. Lines 1-3 declare a model using parametric edge
potentials for arbitrary graphs. Here, class weight re-weights the hamming loss according
to inverse class frequencies. The parametric pairwise interactions have three features: a
constant feature, color similarity, and relative vertical position. The first two are declared
to be symmetric with respect to the direction of an edge, the last is antisymmetric. The
inference method used is QPBO-fusion moves. Line 5 creates a learner object that will
learn the parameters for the given model using the n-slack cutting plane method, and line
6 performs the actual learning. Using this simple setup, we achieve an accuracy of 30.3
on the validation set following the protocol of Krähenbühl and Koltun (2012), who report
30.2 using a more complex approach. Training the structured model takes approximately
30 minutes using a single Intel Core i7 core.

1. The preprocessed data can be downloaded at http://www.ais.uni-bonn.de/download/datasets.html.

3



Müller and Behnke

0.0001 0.001 0.01 0.1 1.0
C

0

500

1000

1500

2000

2500

3000

3500 learning time (s) MNIST

SVM^struct
PyStruct

0.0001 0.001 0.01 0.1 1.0
C

0.88

0.89

0.90

0.91

0.92

0.93 accuracy MNIST

SVM^struct
PyStruct

Figure 1: Runtime comparison of PyStruct and SVMstruct for multi-class classification.

4. Experiments

While PyStruct focuses on usability and covers a wide range of applications, it is also
important that the implemented learning algorithms run in acceptable time. In this section,
we compare our implementation of the 1-slack cutting plane algorithm (Joachims et al.,
2009) with the implementation in SVMstruct. We compare performance of the Crammer-
Singer multi-class SVM with respect to learning time and accuracy on the MNIST dataset of
handwritten digits. While multi-class classification is not very interesting from a structured
prediction point of view, this problem is well-suited to benchmark the cutting plane solvers
with respect to accuracy and speed.

Results are shown in Figure 1. We report learning times and accuracy for varying
regularization parameter C. The MNIST dataset has 60 000 training examples, 784 features
and 10 classes.2 The figure indicates that PyStruct has competitive performance, while
using a high-level interface in a dynamic programming language.

5. Conclusion

This paper introduced PyStruct, a modular structured learning and prediction library in
Python. PyStruct is geared towards ease of use, while providing efficient implementa-
tions. PyStruct integrates itself into the scientific Python eco-system, making it easy to
use with existing libraries and applications. Currently, PyStruct focuses on max-margin
and perceptron-based approaches. In the future, we plan to integrate other paradigms,
such as sampling-based learning (Wick et al., 2011), surrogate objectives (for example
pseudo-likelihood), and approaches that allow for a better integration of inference and
learning (Meshi et al., 2010).

Acknowledgments

The authors would like to thank Vlad Niculae and Forest Gregg for their contributions to
PyStruct and Andre Martins for his help in integrating the AD3 solver with PyStruct.
This work was partially funded by the B-IT research school.

References

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk. SLIC Superpixels
Compared to State-of-the-Art Superpixel Methods. PAMI, 2012.

2. Details about the experiment and code for the experiments can be found on the project website.

4



PyStruct- learning structured prediction in Python

J. Dahl and L. Vandenberghe. Cvxopt: A python package for convex optimization. 2006.

T. Finley and T. Joachims. Training structural SVMs when exact inference is intractable.
In ICML, 2008.

T. Joachims, T. Finley, and C.-N. J. Yu. Cutting-plane training of structural SVMs. JMLR,
77(1), 2009.

J. H. Kappes, B. Andres, F. A. Hamprecht, C. Schnörr, S. Nowozin, D. Batra, S. Kim, B. X.
Kausler, J. Lellmann, N. Komodakis, et al. A comparative study of modern inference
techniques for discrete energy minimization problems. In CVPR, 2013.

D. E. King. Dlib-ml: A machine learning toolkit. JMLR, 10, 2009.

P. Krähenbühl and V. Koltun. Efficient inference in fully connected CRFs with Gaussian
edge potentials. In NIPS, 2012.

S. Lacoste-Julien, M. Schmidt, and F. Bach. A simpler approach to obtaining an o
(1/t) convergence rate for projected stochastic subgradient descent. arXiv preprint
arXiv:1212.2002, 2012.

O. Meshi, D. Sontag, T. Jaakkola, and A. Globerson. Learning efficiently with approximate
inference via dual losses. In ICML, 2010.

J. M. Mooij. libDAI: A free and open source C++ library for discrete approximate inference
in graphical models. JMLR, 2010.

L.-P. Morency, A. Quattoni, and T. Darrell. Latent-dynamic discriminative models for
continuous gesture recognition. In CVPR, 2007.

S. Nowozin and C. H. Lampert. Structured learning and prediction in computer vision. Now
publishers Inc, 2011.

N. Okazaki. CRFsuite: a fast implementation of conditional random fields (crfs), 2007.
URL http://www.chokkan.org/software/crfsuite/.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning in python.
JMLR, 2011.

N. Ratliff, J. A. D. Bagnell, and M. Zinkevich. (Online) Subgradient Methods for Structured
Prediction. In AISTATS, 2007.

I. Tsochantaridis, T. Joachims, T. Hofmann, Y. Altun, and Y. Singer. Large margin meth-
ods for structured and interdependent output variables. JMLR, 6(2), 2006.

M. Wick, K. Rohanimanesh, K. Bellare, A. Culotta, and A. McCallum. Samplerank: Train-
ing factor graphs with atomic gradients. In ICML, 2011.

C.-N. J. Yu and T. Joachims. Learning structural SVMs with latent variables. In ICML,
2009.

5


