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A software project  
across communities 
Project vision Scikit-learn was born 
from the observation that most standard 
machine-learning algorithms were out of 
reach of the users that could most benefit 
from them: researchers – biologists, climate 
scientists, experimental physicists – or 
developers of web services or domain-
specific applications. In the scientific world, 
implementations of these algorithms 
mostly consisted of scattered pieces of 
code on researchers’ web pages. Unifying 
efforts could be found in statistics-specific 
environments and libraries such as the R 
language [16], the Weka Java toolkit [7], or 
the Shogun C++ library [18]. Of these, R 

is a custom language, while Weka is a Java 
library with a custom GUI, and Shogun is a 
fairly technical C++ code base. In scikit-
learn, we chose Python to reach many users, 
technical or not, tying machine learning 
into a general-purpose language good 
for simple interactive programming [15], 
sophisticated scripting, as well as full-blown 
applications.

Scikit-learn aims at bridging the gap 
between machine-learning research 
and applications by providing a library, 
and not an environment, in a general-
purpose programming language, relying 
on domain-agnostic data structures [14]. 
Emphasis is put on quality and ease of 
use, which implies focus on installation 

issues, documentation, and API design [4]. 
For the project to be usable in real-world 
settings, computational performance is also 
a priority.

The Python data ecosystem Machine 
learning is only a small part of a data-
analysis pipeline, and scikit-learn dovetails 
nicely into the rich Python ecosystem. These 
include powerful scientific and numeric 
tools [12, 6], but also extensive support for 
text-processing, web services, cryptography 
and visualization. For its numerical needs, 
scikit-learn leverages NumPy arrays [20] 
(data structures for efficient numerical 
computation), SciPy (a collection of classic 
numerical algorithms), matplotlib [9] (a 
package for scientific plotting) and Cython 
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(a programming language to generate 
compiled code in a Python-like syntax [1]). 
A plethora of Python packages can help 
users with input or preprocessing of data, 
notably Pandas for columnar data [11], 
scikit-image for images, and NLTK for text. 
Finally, the IPython environment [15] is 
invaluable for interactive work.

Some history. Scikit-learn started circa 
2007 as code from David Cournapeau and 
Matthieu Brucher’s PhD work, but dwindled 
until 2010, when the Parietal team at INRIA 
adopted the project, hiring a full-time 
engineer. The team defined basic APIs and 
the efficient binding of LibSVM [5] they 
developed gave the project a compelling 
advantage. In December 2011, the first 
international sprint was organized with 
generous funding from Google. Today, the 
project has grown vastly beyond INRIA into 
a worldwide open source effort with more 
than 200 contributors.

A brief introduction  
to machine learning
Machine learning is about extracting rules 
from data, most often with the goal of 
making decisions on new data [8]. As a 
simple example, we show in Fig. 1 data about 
wage in the US [2]: 11 features, including 

wage, number of years of education and of 
work experience, describe 534 individuals, 
called samples in machine-learning jargon. 

This example showcases many of the 
typical difficulties in machine learning. 
Samples are irregularly distributed, as most 
individuals completed studies after high 
school. As a result, there are gaping holes 

in the 2D plot of education versus work 
experience, in which statistical claims 
require extrapolation. The data is very 
noisy: for a given pair of education and 
work experience values, wage varies widely. 
This variability is probably explained by 
missing factors, such as sector of activity, 
but adding them to the analysis creates a 

Figure 1. Wage as a function of years of work 
experience and education; data from [2].

Figure 2. Wage prediction from years of work 
experience and education, using random forests.

Figure 3. Wage prediction from years of work 
experience and education, using a linear SVM.
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strings that serve as labels for the class to 
which each sample belongs. Because data 
seldom arrives in this format in the real 
world, scikit-learn comes with flexible 
feature extraction code to make data 
suitable for consumption by estimators.

Supervised models: learning to predict. 
The goal of supervised models is the 
prediction of some value of interest. The 
corresponding estimators have a predict 
method, that takes a data matrix X and 
returns a predicted y.

The performance of a model measures 
its ability to correctly predict new data. 
Because of overfitting, the training data 
used for learning should in general not be 
used to also evaluate model performance, 
as it may result in overly optimistic 
estimates of the true prediction error of the 
model. Instead, the correct way to obtain 
an unbiased estimate is to leave out test 
data, untouched during training and used 
for model evaluation only. Alternatively, a 
cross-validation scheme may also be used, 
where the data is repeatedly split into train 
and test subsets. 

Scikit-learn provides integrated support 
for cross-validation, as specific iterators 
defining the train and test subsets. Several 
functions and objects accept these iterators 
as arguments to perform cross-validation 
internally. For instance the cross_val_score 
function measures the prediction score 
of an estimator. Cross-validation can 
also be used to tune the meta-parameters 
of an estimator, such as the sparsity of 
a sparse model. For this, specific meta-
estimators, such as the GridSearchCV, take 
another estimator at construction time, 
and use cross-validation internally to set 
its parameters. When used together with 
cross_val_score, they perform nested cross-
validation, i.e., the meta-parameters are set 
independently of the test data.

Unsupervised models: learning to 
transform. Unsupervised learning covers 
all learning applications in which there is 
no clearly identified variable to predict. For 
instance, in a clustering application, the task 
is to group together observations that are 
similar. Dimension reduction tries to find 
simplified representations that capture well 
the properties of the data. Novelty detection 
finds in a new dataset observations that 

differ from the data in the train set. 
As the uses of unsupervised learning are 

very diverse, it is not possible to have an 
API as uniform as for supervised learning. 
While some unsupervised estimators can 
be used to predict a characteristic of new 
data, such as in novelty detection, many are 
useful to transform data, as in dimension 
reduction. Scikit-learn estimators can have 
a transform method, used for this purpose. 
A Pipeline estimator can then chain 
estimators to form a new estimator that 
applies transformations before calling the fit 
or predict method of the last object.

In practice: putting  
scikit-learn to work
A simple text-mining example. Not every 
dataset comes as a set of numbers. For 
instance in natural language processing 
(NLP), observations are strings, which 
needs to be transformed into the data 
matrix expected by estimators. Often, 
features used to build decisions indicate 
the presence of certain words, or their 
frequencies. In spam filtering, it can be 
very relevant to extract from a document 
that it contains the term “casino.” In other 
NLP problems, such as finding proper 
names, events such as “next token is a 
Roman numeral” may be relevant, as in 
“J.P. Kennedy III.” Reusing the transform 
API, scikit-learn provides feature extraction 
objects, which turn such unstructured data 
into a data matrix. In these situations, the 
X matrix is a matrix of counting statistics. 
Since each word is typically present in only 
a few documents, the data matrix will be 
mostly zeros. SciPy offers a sparse matrix 
object that stores the zeros in such matrices 
implicitly, and many scikit-learn estimators 
can use this object to improve scalability.

In Fig. 4 we give an example of fully 
functioning code to do sentiment polarity 
classification for movie reviews: given a 
review, it outputs whether that review is 
positive about the movie it concerns. The 
code demonstrates the use of pipelines, 
and also shows how machine learning ties 
into other Python modules: downloading, 
unpacking and learning from a dataset are 
all done in one programming language. This 
script first fetches a hand-labeled movie 
review dataset [13] and unpacks it to disk 
using standard Python libraries. It then 
loads these using scikit-learn data loading 

more complex picture, in 3D or more, rather 
than 2D, with even more gaps.

In Fig. 2, we use a popular machine-
learning algorithm, random forests, 
to predic t the wage from the years of 
education, or the years of work experience, 
either as separate features, or combined. The 
patchy square appearance of the prediction 
is due to the workings of the algorithm, and 
illustrates the corresponding extrapolation 
mechanism. The predictions fit the data 
well, perhaps too well: on the prediction 
solely from the years of education (left of 
the figure), it is hard to believe in the bump 
at five years. This bump is probably a case 
of overfitting: the algorithm is learning 
its prediction from noise in the data. As a 
result, the prediction error on new data will 
be significantly different (usually, higher and 
therefore worse) than that measured on the 
training data. 

In Fig. 3, we use another popular 
machine-learning algorithm, linear Support 
Vector Machines (SVMs). Unlike random 
forests, it learns decisions with linear 
functions. It is said that it has a lower 
model complexity, because the number of 
parameters to learn from the data is much 
smaller. The risk here is to underfit: the 
algorithm may not fully use the richness 
of the data, which may not follow a linear 
law. The art of machine learning consists 
in choosing the right family of algorithms/
models to describe the data well and find 
the sweet spot between under- and overfit. 
As the number of features describing the 
data grows, the number of parameters to 
learn grows, and thus the risk of overfitting 
increases. This core difficulty is known as the 
curse of dimensionality.

Learning with scikit-learn
Setting up models. Learning algorithms 
in scikit-learn are embodied in estimators, 
objects instantiated with parameters that 
control learning. Training data is passed to 
the fit method, which accepts an (n × p) data 
matrix X, represented as a NumPy array or 
SciPy sparse matrix, where n is the number 
of samples, and p the number of features. 
When there is a quantity or class label to 
predict, a second argument y (usually a 1D  
n × 1 array) contains the desired outcomes 
for the rows in X. For a regression task such 
as wage prediction, these are real-valued, 
while in classification they are integers or 
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Figure 4. Simple text-processing code to download movie reviews and learn positive 
versus negative ratings.

functions, makes a pipeline of a tf–idf 
feature extractor [17] (that turns strings into 
a sparse matrix based on word frequencies) 
and logistic regression, and finally trains 
the model. Meta-parameters for the feature 
extractor and the classifier are set manually. 
We can test our classifier on two new movie 
reviews.1

Here, we asked the estimator to predict 
whether the reviews were positive. The first 
review is predicted as being negative (0), 
while the second is positive (1). We have 
anecdotal evidence that the classifier works. 
To get a measure for the classifier’s accuracy 
we retrain it in a cross-validation scheme. 
This scheme yields the fraction of correct 
answers on three different folds:

We see that the expected accuracy is 
about 88%. Experimenting with different 
classification models is easy: e.g., replacing 
LogisticRegression with svm.LinearSVC 
gives a linear support vector machine.

What about big data? Big data is a major 
trend in data analytics: applying machine 
learning to large datasets can yield useful 
new insight. While scikit-learn is most 
efficient in the “medium data” range, using 
shared memory multiprocessors rather than 
clusters, it has facilities for dealing with 
datasets that don’t fit in any single machine.

Thinking in terms of the (n × p) data 
matrix, we can distinguish between 
the case of large numbers of samples n, 
and large numbers of features p. For a 
large-p case, scikit-learn’s options include 
random projections, which reduce data 
dimensionality while preserving most of the 
geometric structure. For the large-n case, 
some estimators expose a partial_fit method 
that does online learning. Instead of loading 
all of the data in a single huge matrix, 
the user can feed the estimator chunks of 
the data, and the algorithm finds a good 
approximation to its objective after a few 
passes over the dataset.

With large collections of text, one faces 
both challenges: the dimensionality p 
tends to increase with sample size n, as the 
number of different words used is greater 
in large collections [10, 88–89]. Beyond 
the mere size of the data matrix created 
by a standard vectorization approach, 
outlined earlier, another challenge is that 
the vectorization must be done in two 
passes over the documents, as the size of 
the output vectors is not known up front. 
Feature hashing can be used to tackle both 
of these challenges and produce a streaming 
vectorizer, the HashingVectorizer in scikit-
learn. Words are run through a (stateless) 
hash function, rather than a lookup table, to 
map words to indices. Collisions may occur, 
but the hashing algorithm [21] is specially 
designed to mitigate their effect. The 
dimensionality of the output vectors can 
be set by the user; the bigger, the less likely 
collisions will occur. A full example doing 
online learning on the 20 Newsgroups 
corpus2 is given in Fig. 5 (a downloader for 
this corpus comes with scikit-learn).

Nurturing an  
open source project
The greatest asset of the scikit-learn project 
is its breadth of contributors, coming 
from different backgrounds, working in 
different institutions, with a variety of 
applications: more than 200 contributors 
in total, 15 active core contributors in the 
past year. Indeed, not only is there strength 
in numbers, but the convergence of points 
of view make for better code and better 
design. From a developer’s perspective, the 
project is managed with the goal of enabling 
newcomers to contribute, while keeping 
quality high. 

Our development workflow relies 
on intensive code review, facilitated by 
the online version control environment 
GitHub (http://github.com). The code 
review process is a great asset to raising 
the quality of the code, from all points of 
view: algorithmic, numerical robustness, 
homogeneity of APIs, ease of use and 
documentation. Another central tool for 
maintaining quality in the project is the 
use of unit testing (some 88% of the lines 
of code are covered). All would-be code 
contributions are automatically tested using 
Travis (http://travis-ci.org).

The open-source community-driven 
model has produced a useful, high-quality 
artifact in scikit-learn. However, we find 
that this model does not fit in the standard 
professional incentive structure, whether 
it be in academia or in the industry. 
Indeed, getting due credit for grassroots 
free software that “just works” is difficult. 
None of the grant proposals submitted to 
fund development by core contributors 
has so far been accepted, and there is no 
straightforward revenue model. Even more 
challenging is rewarding properly the long 
tail of small contributors.

Defining scope and priorities is a key 
challenge. As scikit-learn’s purpose is 
to provide tried-and-true, mostly turn-
key, predictive tools, we have to walk the 
fine line between supporting powerful 

1 The code can be tried interactively by simply 
copy-pasting it into an interactive Python 
interpreter or IPython [15].
2 http://qwone.com/~jason/20Newsgroups/
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Figure 5. On-line learning: the main loop iterates over batches of 1000 documents, 
vectorizing them on the fly and updating the classier. Running the example shows the error 
on the test set progressively decreasing as data is accumulated.

techniques and utilizing our limited project 
cycles on proven technologies. Scikit-learn 
has become a reference machine learning 
toolkit. As such, it should offer a wide 
variety of learning algorithms. However, 
each new feature comes with a maintenance 
cost. Uncontrolled growth would lead the 
project to pick up weight until it came to  
a crawl.

On the one hand, scikit-learn has been 
developed with high standards of quality. 
We strive to identify and integrate all major 
methods useful for prediction tasks. We 
favour time-tested algorithms and put great 
care in the choice of default parameters. We 
put effort into making the documentation 
didactic and pragmatic. Our ambition is 
that the scikit code base can provide an 
executable alternative to textbooks, with all 
the figures generated by code examples. 

On the other hand, machine learning is a 
very active field of research, with promising 
trends such as deep learning, harnessing 
GPUs or distributed computing for extra 
computational power, or extending to new 
platforms, such as Android or iOS-based 
embedded devices. However, deep neural 
networks are an emerging tool with a huge 
potential, but are still in flux and hard to 
use without significant expertise. Similarly, 
GPGPU technology is promising, but 
not ready for non-expert use. The HPC 
community and industry have largely 
achieved source-level compatibility with 
OpenCL [19], but performance portability 
and cross-platform driver support remain 
challenging. Finally, support for mobile 
platforms such as Android is determined by 
those platforms’ support for Python and the 
standard C/C++ build chain. Scikit-learn 
is designed to run on any platform that 
supports the scientific Python stack. 

Summary
The vision of the scikit-learn project is to 
bring advances in machine learning to 
users that that may lack the full expertise. 
As a consequence, we focus on seasoned 
approaches, rather than implementing 
ongoing research. We believe that code is 
an intrinsic part of the scholarly output of 
scientific research in computational science 
[3], and scikit-learn strives to be akin to a 
reference textbook in this research software 
landscape that also scales to being useable at 
in production settings. n
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