
29January 2015 | Volume 19, Issue 1 GetMobile

A software project
across communities
Project vision Scikit-learn was born
from the observation that most standard
machine-learning algorithms were out of
reach of the users that could most benefit
from them: researchers – biologists, climate
scientists, experimental physicists – or
developers of web services or domain-
specific applications. In the scientific world,
implementations of these algorithms
mostly consisted of scattered pieces of
code on researchers’ web pages. Unifying
efforts could be found in statistics-specific
environments and libraries such as the R
language [16], the Weka Java toolkit [7], or
the Shogun C++ library [18]. Of these, R

is a custom language, while Weka is a Java
library with a custom GUI, and Shogun is a
fairly technical C++ code base. In scikit-
learn, we chose Python to reach many users,
technical or not, tying machine learning
into a general-purpose language good
for simple interactive programming [15],
sophisticated scripting, as well as full-blown
applications.

Scikit-learn aims at bridging the gap
between machine-learning research
and applications by providing a library,
and not an environment, in a general-
purpose programming language, relying
on domain-agnostic data structures [14].
Emphasis is put on quality and ease of
use, which implies focus on installation

issues, documentation, and API design [4].
For the project to be usable in real-world
settings, computational performance is also
a priority.

The Python data ecosystem Machine
learning is only a small part of a data-
analysis pipeline, and scikit-learn dovetails
nicely into the rich Python ecosystem. These
include powerful scientific and numeric
tools [12, 6], but also extensive support for
text-processing, web services, cryptography
and visualization. For its numerical needs,
scikit-learn leverages NumPy arrays [20]
(data structures for efficient numerical
computation), SciPy (a collection of classic
numerical algorithms), matplotlib [9] (a
package for scientific plotting) and Cython

Scikit-learn:
Machine Learning Without
Learning the Machinery

Editor: Matthai Philipose

Machine learning is a pervasive development at the intersection of statistics and computer science. While it can
benefit many data-related applications, the technical nature of the research literature and the corresponding
algorithms slows down its adoption. Scikit-learn is an open-source software project that aims at making machine
learning accessible to all, whether it be in academia or in industry. It benefits from the general-purpose Python
language, which is both broadly adopted in the scientific world, and supported by a thriving ecosystem of
contributors. Here we give a quick introduction to scikit-learn as well as to machine-learning basics.

G. Varoquaux
Parietal, INRIA, CEA Institute, France

L. Buitinck
University of Amsterdam

G. Louppe
University of Liège, Belgium

O. Grisel
Parietal, INRIA, CEA Institute, France

F. Pedregosa
Parietal, INRIA, CEA Institute, France

A. Mueller
Amazon Development Centre, Berlin

[Arm’s Length]

GetMobile January 2015 | Volume 19, Issue 130

(a programming language to generate
compiled code in a Python-like syntax [1]).
A plethora of Python packages can help
users with input or preprocessing of data,
notably Pandas for columnar data [11],
scikit-image for images, and NLTK for text.
Finally, the IPython environment [15] is
invaluable for interactive work.

Some history. Scikit-learn started circa
2007 as code from David Cournapeau and
Matthieu Brucher’s PhD work, but dwindled
until 2010, when the Parietal team at INRIA
adopted the project, hiring a full-time
engineer. The team defined basic APIs and
the efficient binding of LibSVM [5] they
developed gave the project a compelling
advantage. In December 2011, the first
international sprint was organized with
generous funding from Google. Today, the
project has grown vastly beyond INRIA into
a worldwide open source effort with more
than 200 contributors.

A brief introduction
to machine learning
Machine learning is about extracting rules
from data, most often with the goal of
making decisions on new data [8]. As a
simple example, we show in Fig. 1 data about
wage in the US [2]: 11 features, including

wage, number of years of education and of
work experience, describe 534 individuals,
called samples in machine-learning jargon.

This example showcases many of the
typical difficulties in machine learning.
Samples are irregularly distributed, as most
individuals completed studies after high
school. As a result, there are gaping holes

in the 2D plot of education versus work
experience, in which statistical claims
require extrapolation. The data is very
noisy: for a given pair of education and
work experience values, wage varies widely.
This variability is probably explained by
missing factors, such as sector of activity,
but adding them to the analysis creates a

Figure 1. Wage as a function of years of work
experience and education; data from [2].

Figure 2. Wage prediction from years of work
experience and education, using random forests.

Figure 3. Wage prediction from years of work
experience and education, using a linear SVM.

[Arm’s Length]

31January 2015 | Volume 19, Issue 1 GetMobile

[Arm’s Length]

strings that serve as labels for the class to
which each sample belongs. Because data
seldom arrives in this format in the real
world, scikit-learn comes with flexible
feature extraction code to make data
suitable for consumption by estimators.

Supervised models: learning to predict.
The goal of supervised models is the
prediction of some value of interest. The
corresponding estimators have a predict
method, that takes a data matrix X and
returns a predicted y.

The performance of a model measures
its ability to correctly predict new data.
Because of overfitting, the training data
used for learning should in general not be
used to also evaluate model performance,
as it may result in overly optimistic
estimates of the true prediction error of the
model. Instead, the correct way to obtain
an unbiased estimate is to leave out test
data, untouched during training and used
for model evaluation only. Alternatively, a
cross-validation scheme may also be used,
where the data is repeatedly split into train
and test subsets.

Scikit-learn provides integrated support
for cross-validation, as specific iterators
defining the train and test subsets. Several
functions and objects accept these iterators
as arguments to perform cross-validation
internally. For instance the cross_val_score
function measures the prediction score
of an estimator. Cross-validation can
also be used to tune the meta-parameters
of an estimator, such as the sparsity of
a sparse model. For this, specific meta-
estimators, such as the GridSearchCV, take
another estimator at construction time,
and use cross-validation internally to set
its parameters. When used together with
cross_val_score, they perform nested cross-
validation, i.e., the meta-parameters are set
independently of the test data.

Unsupervised models: learning to
transform. Unsupervised learning covers
all learning applications in which there is
no clearly identified variable to predict. For
instance, in a clustering application, the task
is to group together observations that are
similar. Dimension reduction tries to find
simplified representations that capture well
the properties of the data. Novelty detection
finds in a new dataset observations that

differ from the data in the train set.
As the uses of unsupervised learning are

very diverse, it is not possible to have an
API as uniform as for supervised learning.
While some unsupervised estimators can
be used to predict a characteristic of new
data, such as in novelty detection, many are
useful to transform data, as in dimension
reduction. Scikit-learn estimators can have
a transform method, used for this purpose.
A Pipeline estimator can then chain
estimators to form a new estimator that
applies transformations before calling the fit
or predict method of the last object.

In practice: putting
scikit-learn to work
A simple text-mining example. Not every
dataset comes as a set of numbers. For
instance in natural language processing
(NLP), observations are strings, which
needs to be transformed into the data
matrix expected by estimators. Often,
features used to build decisions indicate
the presence of certain words, or their
frequencies. In spam filtering, it can be
very relevant to extract from a document
that it contains the term “casino.” In other
NLP problems, such as finding proper
names, events such as “next token is a
Roman numeral” may be relevant, as in
“J.P. Kennedy III.” Reusing the transform
API, scikit-learn provides feature extraction
objects, which turn such unstructured data
into a data matrix. In these situations, the
X matrix is a matrix of counting statistics.
Since each word is typically present in only
a few documents, the data matrix will be
mostly zeros. SciPy offers a sparse matrix
object that stores the zeros in such matrices
implicitly, and many scikit-learn estimators
can use this object to improve scalability.

In Fig. 4 we give an example of fully
functioning code to do sentiment polarity
classification for movie reviews: given a
review, it outputs whether that review is
positive about the movie it concerns. The
code demonstrates the use of pipelines,
and also shows how machine learning ties
into other Python modules: downloading,
unpacking and learning from a dataset are
all done in one programming language. This
script first fetches a hand-labeled movie
review dataset [13] and unpacks it to disk
using standard Python libraries. It then
loads these using scikit-learn data loading

more complex picture, in 3D or more, rather
than 2D, with even more gaps.

In Fig. 2, we use a popular machine-
learning algorithm, random forests,
to predic t the wage from the years of
education, or the years of work experience,
either as separate features, or combined. The
patchy square appearance of the prediction
is due to the workings of the algorithm, and
illustrates the corresponding extrapolation
mechanism. The predictions fit the data
well, perhaps too well: on the prediction
solely from the years of education (left of
the figure), it is hard to believe in the bump
at five years. This bump is probably a case
of overfitting: the algorithm is learning
its prediction from noise in the data. As a
result, the prediction error on new data will
be significantly different (usually, higher and
therefore worse) than that measured on the
training data.

In Fig. 3, we use another popular
machine-learning algorithm, linear Support
Vector Machines (SVMs). Unlike random
forests, it learns decisions with linear
functions. It is said that it has a lower
model complexity, because the number of
parameters to learn from the data is much
smaller. The risk here is to underfit: the
algorithm may not fully use the richness
of the data, which may not follow a linear
law. The art of machine learning consists
in choosing the right family of algorithms/
models to describe the data well and find
the sweet spot between under- and overfit.
As the number of features describing the
data grows, the number of parameters to
learn grows, and thus the risk of overfitting
increases. This core difficulty is known as the
curse of dimensionality.

Learning with scikit-learn
Setting up models. Learning algorithms
in scikit-learn are embodied in estimators,
objects instantiated with parameters that
control learning. Training data is passed to
the fit method, which accepts an (n × p) data
matrix X, represented as a NumPy array or
SciPy sparse matrix, where n is the number
of samples, and p the number of features.
When there is a quantity or class label to
predict, a second argument y (usually a 1D
n × 1 array) contains the desired outcomes
for the rows in X. For a regression task such
as wage prediction, these are real-valued,
while in classification they are integers or

GetMobile January 2015 | Volume 19, Issue 132

Figure 4. Simple text-processing code to download movie reviews and learn positive
versus negative ratings.

functions, makes a pipeline of a tf–idf
feature extractor [17] (that turns strings into
a sparse matrix based on word frequencies)
and logistic regression, and finally trains
the model. Meta-parameters for the feature
extractor and the classifier are set manually.
We can test our classifier on two new movie
reviews.1

Here, we asked the estimator to predict
whether the reviews were positive. The first
review is predicted as being negative (0),
while the second is positive (1). We have
anecdotal evidence that the classifier works.
To get a measure for the classifier’s accuracy
we retrain it in a cross-validation scheme.
This scheme yields the fraction of correct
answers on three different folds:

We see that the expected accuracy is
about 88%. Experimenting with different
classification models is easy: e.g., replacing
LogisticRegression with svm.LinearSVC
gives a linear support vector machine.

What about big data? Big data is a major
trend in data analytics: applying machine
learning to large datasets can yield useful
new insight. While scikit-learn is most
efficient in the “medium data” range, using
shared memory multiprocessors rather than
clusters, it has facilities for dealing with
datasets that don’t fit in any single machine.

Thinking in terms of the (n × p) data
matrix, we can distinguish between
the case of large numbers of samples n,
and large numbers of features p. For a
large-p case, scikit-learn’s options include
random projections, which reduce data
dimensionality while preserving most of the
geometric structure. For the large-n case,
some estimators expose a partial_fit method
that does online learning. Instead of loading
all of the data in a single huge matrix,
the user can feed the estimator chunks of
the data, and the algorithm finds a good
approximation to its objective after a few
passes over the dataset.

With large collections of text, one faces
both challenges: the dimensionality p
tends to increase with sample size n, as the
number of different words used is greater
in large collections [10, 88–89]. Beyond
the mere size of the data matrix created
by a standard vectorization approach,
outlined earlier, another challenge is that
the vectorization must be done in two
passes over the documents, as the size of
the output vectors is not known up front.
Feature hashing can be used to tackle both
of these challenges and produce a streaming
vectorizer, the HashingVectorizer in scikit-
learn. Words are run through a (stateless)
hash function, rather than a lookup table, to
map words to indices. Collisions may occur,
but the hashing algorithm [21] is specially
designed to mitigate their effect. The
dimensionality of the output vectors can
be set by the user; the bigger, the less likely
collisions will occur. A full example doing
online learning on the 20 Newsgroups
corpus2 is given in Fig. 5 (a downloader for
this corpus comes with scikit-learn).

Nurturing an
open source project
The greatest asset of the scikit-learn project
is its breadth of contributors, coming
from different backgrounds, working in
different institutions, with a variety of
applications: more than 200 contributors
in total, 15 active core contributors in the
past year. Indeed, not only is there strength
in numbers, but the convergence of points
of view make for better code and better
design. From a developer’s perspective, the
project is managed with the goal of enabling
newcomers to contribute, while keeping
quality high.

Our development workflow relies
on intensive code review, facilitated by
the online version control environment
GitHub (http://github.com). The code
review process is a great asset to raising
the quality of the code, from all points of
view: algorithmic, numerical robustness,
homogeneity of APIs, ease of use and
documentation. Another central tool for
maintaining quality in the project is the
use of unit testing (some 88% of the lines
of code are covered). All would-be code
contributions are automatically tested using
Travis (http://travis-ci.org).

The open-source community-driven
model has produced a useful, high-quality
artifact in scikit-learn. However, we find
that this model does not fit in the standard
professional incentive structure, whether
it be in academia or in the industry.
Indeed, getting due credit for grassroots
free software that “just works” is difficult.
None of the grant proposals submitted to
fund development by core contributors
has so far been accepted, and there is no
straightforward revenue model. Even more
challenging is rewarding properly the long
tail of small contributors.

Defining scope and priorities is a key
challenge. As scikit-learn’s purpose is
to provide tried-and-true, mostly turn-
key, predictive tools, we have to walk the
fine line between supporting powerful

1 The code can be tried interactively by simply
copy-pasting it into an interactive Python
interpreter or IPython [15].
2 http://qwone.com/~jason/20Newsgroups/

[Arm’s Length]

33January 2015 | Volume 19, Issue 1 GetMobile

References
[1] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S.

Seljebotn, and K. Smith. Cython: the best of both
worlds. CiSE, 13:31, 2011.

[2] E. R. Berndt. The practice of econometrics: classic
and contemporary. Addison-Wesley, 1991.

[3] J. B. Buckheit and D. L. Donoho. Wavelab and
reproducible research. Springer, 1995.

[4] L. Buitinck, G. Louppe, M. Blondel, F.
Pedregosa, A. Mu¨ller, O. Grisel, V. Niculae, P.
Prettenhofer, A. Gramfort, J. Grobler, R. Layton,
J. Vanderplas, A. Joly, B. Holt, and G. Varoquaux.
API design for machine learning software:
experiences from the scikit-learn project. In
ECML PKDD Workshop on Languages for
Machine Learning, 2013.

[5] C.-C. Chang and C.-J. Lin. LIBSVM: a library
for support vector machines. ACM Trans. on
Intelligent Systems and Technology, 2:27, 2011.

[6] V. Haenel, E. Gouillart, and G. Varoquaux.
Python scientific lecture notes, 2013.

[7] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P.
Reutemann, and I.H. Witten. The WEKA data
mining software: an update. ACM SIGKDD
Explorations Newsletter, 11:10, 2009.

[8] T. Hastie, R. Tibshirani, and J. Friedman. The
Elements of Statistical Learning. Springer, 2009.

[9] J. D. Hunter. Matplotlib: A 2d graphics
environment. CiSE, page 90, 2007.

[10] C. D. Manning, P. Raghavan, and H. Schütze.
Introduction to Information Retrieval. CUP, 2009.

[11] W. McKinney. Python for Data Analysis: Data
Wrangling with Pandas, NumPy, and IPython.
O’Reilly, 2012.

[12] T. E. Oliphant. Python for scientific computing.
CiSE, 9:10, 2007.

[13] B. Pang and L. Lee. A sentimental education:

Sentiment analysis using subjectivity. In Proc.
ACL, 2004.

[14] F. Pedregosa, G. Varoquaux, A. Gramfort,
V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J.
Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. JMLR,
12:2825, 2011.

[15] F. Perez and B. E. Granger. IPython: a system
for interactive scientific computing. CiSE,
9(3):21, 2007.

[16] R Core Team. R: A Language and Environment
for Statistical Computing. R Foundation for
Statistical Computing, 2013. ISBN 3-900051-
07-0.

[17] J. D. Rennie, L. Shih, J. Teevan, and David
R. Karger. Tackling the poor assumptions of
naive Bayes text classifiers. In ICML, page 616.
Washington DC, 2003.

[18] S. Sonnenburg, G. Ra¨tsch, S. Henschel, C.
Widmer, J. Behr, A. Zien, F. de Bona, A. Binder,
C. Gehl, and V. Franc. The SHOGUN Machine
Learning Toolbox. Journal of Machine Learning
Research, 11:1799, 2010.

[19] J. E. Stone, D. Gohara, and G. Shi. OpenCL:
A parallel programming standard for hetero-
geneous computing systems. CiSE, 12(3), 2010.

[20] S. van der Walt, S. C. Colbert, and G.
Varoquaux. The NumPy array: a structure for
efficient numerical computation. CiSE, 13:22,
2011.

[21] K. Weinberger, A. Dasgupta, J. Langford, A.
Smola, and J. Attenberg. Feature hashing for
large scale multitask learning. In Proc. ICML,
2009.

Figure 5. On-line learning: the main loop iterates over batches of 1000 documents,
vectorizing them on the fly and updating the classier. Running the example shows the error
on the test set progressively decreasing as data is accumulated.

techniques and utilizing our limited project
cycles on proven technologies. Scikit-learn
has become a reference machine learning
toolkit. As such, it should offer a wide
variety of learning algorithms. However,
each new feature comes with a maintenance
cost. Uncontrolled growth would lead the
project to pick up weight until it came to
a crawl.

On the one hand, scikit-learn has been
developed with high standards of quality.
We strive to identify and integrate all major
methods useful for prediction tasks. We
favour time-tested algorithms and put great
care in the choice of default parameters. We
put effort into making the documentation
didactic and pragmatic. Our ambition is
that the scikit code base can provide an
executable alternative to textbooks, with all
the figures generated by code examples.

On the other hand, machine learning is a
very active field of research, with promising
trends such as deep learning, harnessing
GPUs or distributed computing for extra
computational power, or extending to new
platforms, such as Android or iOS-based
embedded devices. However, deep neural
networks are an emerging tool with a huge
potential, but are still in flux and hard to
use without significant expertise. Similarly,
GPGPU technology is promising, but
not ready for non-expert use. The HPC
community and industry have largely
achieved source-level compatibility with
OpenCL [19], but performance portability
and cross-platform driver support remain
challenging. Finally, support for mobile
platforms such as Android is determined by
those platforms’ support for Python and the
standard C/C++ build chain. Scikit-learn
is designed to run on any platform that
supports the scientific Python stack.

Summary
The vision of the scikit-learn project is to
bring advances in machine learning to
users that that may lack the full expertise.
As a consequence, we focus on seasoned
approaches, rather than implementing
ongoing research. We believe that code is
an intrinsic part of the scholarly output of
scientific research in computational science
[3], and scikit-learn strives to be akin to a
reference textbook in this research software
landscape that also scales to being useable at
in production settings. n

[Arm’s Length]

